
How do you divide \[\dfrac{2{{x}^{4}}+7}{{{x}^{2}}-1}\] using polynomial long division?
Answer
547.5k+ views
Hint: In this problem, we have to find the division using the polynomial long division method. We can first set up the polynomials to be divided in long division and we can divide the highest order term in the dividend by the highest order term in the divisor for every term by bringing it down step by step. If there are any missing terms for every exponent, add one with a value of 0.
Complete step-by-step solution:
We know that the given fraction is,
\[\dfrac{2{{x}^{4}}+7}{{{x}^{2}}-1}\]
Now we can set up the polynomials to be divided in long division, if there is any missing terms for every exponent, add one with a value of 0, we get
\[{{x}^{2}}-1\overset{{}}{\overline{\left){2{{x}^{4}}+0{{x}^{2}}+7}\right.}}\]
Now we can divide the highest order term in the dividend \[2{{x}^{2}}\] by the highest order term in the divisor x, we get
\[{{x}^{2}}-1\overset{2{{x}^{2}}}{\overline{\left){2{{x}^{4}}+0{{x}^{2}}+7}\right.}}\]
We can now multiply the quotient term to the divisor, we get
\[{{x}^{2}}-1\overset{2{{x}^{2}}}{\overline{\left){\begin{align}
& 2{{x}^{4}}+0{{x}^{2}}+7 \\
& 2{{x}^{4}}-2{{x}^{2}} \\
\end{align}}\right.}}\]
We know that the expression is to be subtracted in the dividend, so we can change the sign in \[2{{x}^{4}}-2{{x}^{2}}\], we get
\[{{x}^{2}}-1\overset{2{{x}^{2}}}{\overline{\left){\begin{align}
& 2{{x}^{4}}+0{{x}^{2}}+7 \\
& -2{{x}^{4}}+2{{x}^{2}} \\
\end{align}}\right.}}\]
Now we can bring down the next term from the dividend to the current dividend,
\[\begin{align}
& {{x}^{2}}-1\overset{2{{x}^{2}}}{\overline{\left){\begin{align}
& 2{{x}^{4}}+0{{x}^{2}}+7 \\
& -\underline{2{{x}^{4}}+2{{x}^{2}}} \\
\end{align}}\right.}} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2{{x}^{2}}+7 \\
\end{align}\]
Now we should divide the highest order term in the dividend 2 by the divisor x, we get
\[\begin{align}
& {{x}^{2}}-1\overset{2{{x}^{2}}+2}{\overline{\left){\begin{align}
& 2{{x}^{4}}+0{{x}^{2}}+7 \\
& -\underline{2{{x}^{4}}+2{{x}^{2}}} \\
\end{align}}\right.}} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2{{x}^{2}}+7 \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2{{x}^{2}}-2 \\
\end{align}\]
We can now multiply the new quotient to the divisor, then subtract those expression to get the next dividend value, we get
\[\begin{align}
& {{x}^{2}}-1\overset{2{{x}^{2}}+2}{\overline{\left){\begin{align}
& 2{{x}^{4}}+0{{x}^{2}}+7 \\
& -\underline{2{{x}^{4}}+2{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 2{{x}^{2}}+7 \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \underline{-2{{x}^{2}}+2} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 9 \\
\end{align}\]
We know that dividend is equal to quotient plus the remainder over the divisor.
Therefore, the final answer is \[\left( 2{{x}^{2}}+2\right) +\dfrac{9}{{{x}^{2}}-1}\].
Note: Students may get confused on seeing the given problem where we can see some missing terms. In such a case we can add 0 for the missing terms. In this problem, we have added only \[0{{x}^{2}}\] as we will have only even terms in power when multiplied. We should also remember the formula for the final answer that is Dividend = Quotient + Remainder/Divisor.
Complete step-by-step solution:
We know that the given fraction is,
\[\dfrac{2{{x}^{4}}+7}{{{x}^{2}}-1}\]
Now we can set up the polynomials to be divided in long division, if there is any missing terms for every exponent, add one with a value of 0, we get
\[{{x}^{2}}-1\overset{{}}{\overline{\left){2{{x}^{4}}+0{{x}^{2}}+7}\right.}}\]
Now we can divide the highest order term in the dividend \[2{{x}^{2}}\] by the highest order term in the divisor x, we get
\[{{x}^{2}}-1\overset{2{{x}^{2}}}{\overline{\left){2{{x}^{4}}+0{{x}^{2}}+7}\right.}}\]
We can now multiply the quotient term to the divisor, we get
\[{{x}^{2}}-1\overset{2{{x}^{2}}}{\overline{\left){\begin{align}
& 2{{x}^{4}}+0{{x}^{2}}+7 \\
& 2{{x}^{4}}-2{{x}^{2}} \\
\end{align}}\right.}}\]
We know that the expression is to be subtracted in the dividend, so we can change the sign in \[2{{x}^{4}}-2{{x}^{2}}\], we get
\[{{x}^{2}}-1\overset{2{{x}^{2}}}{\overline{\left){\begin{align}
& 2{{x}^{4}}+0{{x}^{2}}+7 \\
& -2{{x}^{4}}+2{{x}^{2}} \\
\end{align}}\right.}}\]
Now we can bring down the next term from the dividend to the current dividend,
\[\begin{align}
& {{x}^{2}}-1\overset{2{{x}^{2}}}{\overline{\left){\begin{align}
& 2{{x}^{4}}+0{{x}^{2}}+7 \\
& -\underline{2{{x}^{4}}+2{{x}^{2}}} \\
\end{align}}\right.}} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2{{x}^{2}}+7 \\
\end{align}\]
Now we should divide the highest order term in the dividend 2 by the divisor x, we get
\[\begin{align}
& {{x}^{2}}-1\overset{2{{x}^{2}}+2}{\overline{\left){\begin{align}
& 2{{x}^{4}}+0{{x}^{2}}+7 \\
& -\underline{2{{x}^{4}}+2{{x}^{2}}} \\
\end{align}}\right.}} \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2{{x}^{2}}+7 \\
&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2{{x}^{2}}-2 \\
\end{align}\]
We can now multiply the new quotient to the divisor, then subtract those expression to get the next dividend value, we get
\[\begin{align}
& {{x}^{2}}-1\overset{2{{x}^{2}}+2}{\overline{\left){\begin{align}
& 2{{x}^{4}}+0{{x}^{2}}+7 \\
& -\underline{2{{x}^{4}}+2{{x}^{2}}} \\
\end{align}}\right.}} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 2{{x}^{2}}+7 \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \underline{-2{{x}^{2}}+2} \\
& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; 9 \\
\end{align}\]
We know that dividend is equal to quotient plus the remainder over the divisor.
Therefore, the final answer is \[\left( 2{{x}^{2}}+2\right) +\dfrac{9}{{{x}^{2}}-1}\].
Note: Students may get confused on seeing the given problem where we can see some missing terms. In such a case we can add 0 for the missing terms. In this problem, we have added only \[0{{x}^{2}}\] as we will have only even terms in power when multiplied. We should also remember the formula for the final answer that is Dividend = Quotient + Remainder/Divisor.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

