
How do you divide \[\dfrac{{1 + 7i}}{{9 - 5i}}\] in trigonometric form?
Answer
514.8k+ views
Hint: In order to solve the question given above, you need to have knowledge about complex numbers. It is defined as a number that can be expressed in the form \[a + bi\] , where \[a\] and \[b\] are both real numbers whereas \[i\] is an imaginary unit. Also, you need to know the properties and formulas used in trigonometry.
Formula used:
To solve the above question, you need to remember the trigonometric formulas:
\[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\] .
\[\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b\] .
Complete step by step solution:
We have to divide \[\dfrac{{1 + 7i}}{{9 - 5i}}\] in trigonometric form.
First, let us write the two complex numbers in polar coordinates. This gives us:
\[{z_1} = {r_1}\left( {\cos \alpha + i\sin \alpha } \right)\] and \[{z_2} = {r_2}\left( {\cos \beta + i\sin \beta } \right)\] .
Let us take the two complex numbers as \[{a_1} + {b_1}i\] and \[{a_2} + {b_2}i\] .
Also, \[{r_1} = \sqrt {{a_1}^2 + {b_1}^2} \] ; \[{r_2} = \sqrt {{a_2}^2 + {b_2}^2} \] ; \[\alpha = {\tan ^{ - 1}}\left( {\dfrac{{{b_1}}}{{{a_1}}}} \right)\] and \[\beta = {\tan ^{ - 1}}\left( {\dfrac{{{b_2}}}{{{a_2}}}} \right)\] .
On dividing, we get:
\[\left[ {\dfrac{{{r_1}}}{{{r_2}}}} \right] \left[ {\dfrac{{\cos \alpha + i\sin \alpha }}{{\cos \beta + i\sin \beta }}} \right] \] .
On solving,
\[\left[ {\dfrac{{{r_1}}}{{{r_2}}}} \right] \left[ {\dfrac{{\cos \alpha + i\sin \alpha }}{{\cos \beta + i\sin \beta }} \times \dfrac{{\cos \beta - i\sin \beta }}{{\cos \beta - i\sin \beta }}} \right] \]
\[ \Rightarrow \left[ {\dfrac{{{r_1}}}{{{r_2}}}} \right] \left[ {\dfrac{{\left( {\cos \alpha \cos \beta + \sin \alpha \sin \beta } \right) + i\left( {\sin \alpha \cos \beta - \cos \alpha \sin \beta } \right)}}{{{{\cos }^2}\beta + {{\sin }^2}\beta }}} \right] \] .
Now solve the above brackets using the AB formulas of trigonometry where: \[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\] and \[\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b\] .
So, the above equation becomes:
\[\left[ {\dfrac{{{r_1}}}{{{r_2}}}} \right] \left[ {\cos \left( {\alpha - \beta } \right) + i\sin \left( {\alpha - \beta } \right)} \right] \] .
Now, \[\dfrac{{{z_1}}}{{{z_2}}}\] is given by \[\left( {\dfrac{{{r_1}}}{{{r_2}}},\left( {\alpha - \beta } \right)} \right)\] . Therefore, to divide complex numbers by \[{z_1}\] and \[{z_2}\] .
Now, take new angle as \[\left( {\alpha - \beta } \right)\] and ratio \[\dfrac{{{r_1}}}{{{r_2}}}\] of the modulus of two numbers.
In the above question, \[1 + 7i\] can be written as \[{r_1}\left( {\cos \alpha + i\sin \alpha } \right)\] where
\[{r_1} = \sqrt {{1^2} + {7^2}} \]
\[ = \sqrt {50} \] .
And \[\alpha = {\tan ^{ - 1}}7\] .
And for \[9 - 5i\] can be written as \[{r_2}\left( {\cos \beta + i\sin \beta } \right)\] where
\[{r_2} = \sqrt {{9^2} + {5^2}} \]
\[ = \sqrt {106} \] .
And \[\beta = {\tan ^{ - 1}}\left( {\dfrac{{ - 5}}{9}} \right)\] .
Now, \[\dfrac{{{z_1}}}{{{z_2}}} = \dfrac{{\sqrt {50} }}{{\sqrt {106} }}\left( {\cos \left( {\alpha - \beta } \right) + i\sin \left( {\alpha - \beta } \right)} \right)\] .
So,
\[\tan \left( {\alpha - \beta } \right) = \dfrac{{\tan \alpha - \tan \beta }}{{1 + \tan \alpha \tan \beta }}\]
\[ = \dfrac{{7 - \left( {\dfrac{{ - 5}}{9}} \right)}}{{1 + 7\left( {\dfrac{{ - 5}}{9}} \right)}}\]
\[ = \dfrac{{\dfrac{{68}}{9}}}{{\dfrac{{ - 26}}{9}}}\] .
Now, we get:
\[\tan \left( {\alpha - \beta } \right) = - \dfrac{{34}}{{13}}\] .
Hence, \[\dfrac{{1 + 7i}}{{9 - 5i}} = \dfrac{{\sqrt {50} }}{{\sqrt {106} }}\left( {\cos \theta + i\sin \theta } \right)\] , where \[\theta = {\tan ^{ - 1}}\left( { - \dfrac{{34}}{{13}}} \right)\] .
Note: While solving questions similar to the one given above, you need to remember the concept of complex numbers. You need to remember the formulas used in trigonometry. For example: in the above question we have used \[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\] and \[\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b\] .
Formula used:
To solve the above question, you need to remember the trigonometric formulas:
\[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\] .
\[\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b\] .
Complete step by step solution:
We have to divide \[\dfrac{{1 + 7i}}{{9 - 5i}}\] in trigonometric form.
First, let us write the two complex numbers in polar coordinates. This gives us:
\[{z_1} = {r_1}\left( {\cos \alpha + i\sin \alpha } \right)\] and \[{z_2} = {r_2}\left( {\cos \beta + i\sin \beta } \right)\] .
Let us take the two complex numbers as \[{a_1} + {b_1}i\] and \[{a_2} + {b_2}i\] .
Also, \[{r_1} = \sqrt {{a_1}^2 + {b_1}^2} \] ; \[{r_2} = \sqrt {{a_2}^2 + {b_2}^2} \] ; \[\alpha = {\tan ^{ - 1}}\left( {\dfrac{{{b_1}}}{{{a_1}}}} \right)\] and \[\beta = {\tan ^{ - 1}}\left( {\dfrac{{{b_2}}}{{{a_2}}}} \right)\] .
On dividing, we get:
\[\left[ {\dfrac{{{r_1}}}{{{r_2}}}} \right] \left[ {\dfrac{{\cos \alpha + i\sin \alpha }}{{\cos \beta + i\sin \beta }}} \right] \] .
On solving,
\[\left[ {\dfrac{{{r_1}}}{{{r_2}}}} \right] \left[ {\dfrac{{\cos \alpha + i\sin \alpha }}{{\cos \beta + i\sin \beta }} \times \dfrac{{\cos \beta - i\sin \beta }}{{\cos \beta - i\sin \beta }}} \right] \]
\[ \Rightarrow \left[ {\dfrac{{{r_1}}}{{{r_2}}}} \right] \left[ {\dfrac{{\left( {\cos \alpha \cos \beta + \sin \alpha \sin \beta } \right) + i\left( {\sin \alpha \cos \beta - \cos \alpha \sin \beta } \right)}}{{{{\cos }^2}\beta + {{\sin }^2}\beta }}} \right] \] .
Now solve the above brackets using the AB formulas of trigonometry where: \[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\] and \[\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b\] .
So, the above equation becomes:
\[\left[ {\dfrac{{{r_1}}}{{{r_2}}}} \right] \left[ {\cos \left( {\alpha - \beta } \right) + i\sin \left( {\alpha - \beta } \right)} \right] \] .
Now, \[\dfrac{{{z_1}}}{{{z_2}}}\] is given by \[\left( {\dfrac{{{r_1}}}{{{r_2}}},\left( {\alpha - \beta } \right)} \right)\] . Therefore, to divide complex numbers by \[{z_1}\] and \[{z_2}\] .
Now, take new angle as \[\left( {\alpha - \beta } \right)\] and ratio \[\dfrac{{{r_1}}}{{{r_2}}}\] of the modulus of two numbers.
In the above question, \[1 + 7i\] can be written as \[{r_1}\left( {\cos \alpha + i\sin \alpha } \right)\] where
\[{r_1} = \sqrt {{1^2} + {7^2}} \]
\[ = \sqrt {50} \] .
And \[\alpha = {\tan ^{ - 1}}7\] .
And for \[9 - 5i\] can be written as \[{r_2}\left( {\cos \beta + i\sin \beta } \right)\] where
\[{r_2} = \sqrt {{9^2} + {5^2}} \]
\[ = \sqrt {106} \] .
And \[\beta = {\tan ^{ - 1}}\left( {\dfrac{{ - 5}}{9}} \right)\] .
Now, \[\dfrac{{{z_1}}}{{{z_2}}} = \dfrac{{\sqrt {50} }}{{\sqrt {106} }}\left( {\cos \left( {\alpha - \beta } \right) + i\sin \left( {\alpha - \beta } \right)} \right)\] .
So,
\[\tan \left( {\alpha - \beta } \right) = \dfrac{{\tan \alpha - \tan \beta }}{{1 + \tan \alpha \tan \beta }}\]
\[ = \dfrac{{7 - \left( {\dfrac{{ - 5}}{9}} \right)}}{{1 + 7\left( {\dfrac{{ - 5}}{9}} \right)}}\]
\[ = \dfrac{{\dfrac{{68}}{9}}}{{\dfrac{{ - 26}}{9}}}\] .
Now, we get:
\[\tan \left( {\alpha - \beta } \right) = - \dfrac{{34}}{{13}}\] .
Hence, \[\dfrac{{1 + 7i}}{{9 - 5i}} = \dfrac{{\sqrt {50} }}{{\sqrt {106} }}\left( {\cos \theta + i\sin \theta } \right)\] , where \[\theta = {\tan ^{ - 1}}\left( { - \dfrac{{34}}{{13}}} \right)\] .
Note: While solving questions similar to the one given above, you need to remember the concept of complex numbers. You need to remember the formulas used in trigonometry. For example: in the above question we have used \[\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b\] and \[\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b\] .
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

