
Divide 24 in three parts such that they are in AP and their product is 440.
Answer
474.3k+ views
Hint:
As given in the question the three parts are in AP then let the three parts of 24 is $a - d, a, a + d$. Then submission of all three parts is equal to 24 from here we will calculate a. then the product of three parts is 440 from this we will calculate d.
Complete step by step solution:
Given three parts of 24 is in AP then let us assume three numbers to be $a - d, a, a + d$
So, $a - d + a + a + d = 24$
Therefore $a = 8$
Now, product of all three parts are 440 then
$\left( {a - d} \right) \times \left( a \right) \times \left( {a + d} \right) = 440$
Substituting $a = 8$
$\left( {8 - d} \right) \times \left( 8 \right) \times \left( {8 + d} \right) = 440$
We know that ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$
\[\left( {{8^2} - {d^2}} \right) = 55\]
${d^2} = 64 - 55 = 9$
Taking root on both side we get
$d = 3$
So, three parts of 24 are 5, 8, 11.
Note:
For consecutive three terms to be in AP $a - d,a,a + d$
For 4 consecutive terms in AP =$a - 2d,a - d,a + d,a + 2d$ and so one …
Where a is the 1st term of AP and d is the common difference
As given in the question the three parts are in AP then let the three parts of 24 is $a - d, a, a + d$. Then submission of all three parts is equal to 24 from here we will calculate a. then the product of three parts is 440 from this we will calculate d.
Complete step by step solution:
Given three parts of 24 is in AP then let us assume three numbers to be $a - d, a, a + d$
So, $a - d + a + a + d = 24$
Therefore $a = 8$
Now, product of all three parts are 440 then
$\left( {a - d} \right) \times \left( a \right) \times \left( {a + d} \right) = 440$
Substituting $a = 8$
$\left( {8 - d} \right) \times \left( 8 \right) \times \left( {8 + d} \right) = 440$
We know that ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$
\[\left( {{8^2} - {d^2}} \right) = 55\]
${d^2} = 64 - 55 = 9$
Taking root on both side we get
$d = 3$
So, three parts of 24 are 5, 8, 11.
Note:
For consecutive three terms to be in AP $a - d,a,a + d$
For 4 consecutive terms in AP =$a - 2d,a - d,a + d,a + 2d$ and so one …
Where a is the 1st term of AP and d is the common difference
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
