
How do you divide $ 1000 $ in a ratio of $ 2:3 $ ?
Answer
506.1k+ views
Hint: Let us assume the common factor in the ratio be “x” and frame the mathematical expression for the total number parts and first find the value of “x” and then find the value of the given ratio.
Complete step-by-step answer:
Let us assume the common factor in the given ratio be “x”
Now, $ 2:3 $ is expressed as $ \dfrac{2}{3} = \dfrac{{2x}}{{3x}} $ …. (A)
Now given that we have to divide the number $ 1000 $ in a ratio of $ 2:3 $
Therefore, $ 2x + 3x = 1000 $
Simplify the above expression finding the sum of the terms on the left hand side of the equation –
$ 5x = 1000 $
Term multiplicative on one side if moved to the opposite side then it goes to the denominator.
$ x = \dfrac{{1000}}{5} $
Find the factors for the term in the numerator of the above equation –
$ x = \dfrac{{200 \times 5}}{5} $
Common factors from the numerator and the denominator cancel each other and therefore remove from the numerator and the denominator of the above expression.
$ x = 200 $
Place the above value in the equation A
$ 2:3 $ is expressed as $ \dfrac{2}{3} = \dfrac{{2x}}{{3x}} = \dfrac{{2(200)}}{{3(200)}} = \dfrac{{400}}{{600}} $
Hence, the ratio is expressed as $ 400:600 $
So, the correct answer is “ $ 400:600 $ ”.
Note: When there is ratio given always suppose any common variable and find its value. Always remember the sum of ratio along with the variable always gives the number of parts of the whole. Ratio can be well defined as the comparison between two numbers that are without any units. Whereas, when two ratios are set equal to each other are known as the proportion. Four numbers a, b, c, and d are called to be in the proportion. If $ a:b = c:d $ whereas, four numbers are called to be in continued proportion if the terms are expressed as $ a:b = b:c = c:d $
Complete step-by-step answer:
Let us assume the common factor in the given ratio be “x”
Now, $ 2:3 $ is expressed as $ \dfrac{2}{3} = \dfrac{{2x}}{{3x}} $ …. (A)
Now given that we have to divide the number $ 1000 $ in a ratio of $ 2:3 $
Therefore, $ 2x + 3x = 1000 $
Simplify the above expression finding the sum of the terms on the left hand side of the equation –
$ 5x = 1000 $
Term multiplicative on one side if moved to the opposite side then it goes to the denominator.
$ x = \dfrac{{1000}}{5} $
Find the factors for the term in the numerator of the above equation –
$ x = \dfrac{{200 \times 5}}{5} $
Common factors from the numerator and the denominator cancel each other and therefore remove from the numerator and the denominator of the above expression.
$ x = 200 $
Place the above value in the equation A
$ 2:3 $ is expressed as $ \dfrac{2}{3} = \dfrac{{2x}}{{3x}} = \dfrac{{2(200)}}{{3(200)}} = \dfrac{{400}}{{600}} $
Hence, the ratio is expressed as $ 400:600 $
So, the correct answer is “ $ 400:600 $ ”.
Note: When there is ratio given always suppose any common variable and find its value. Always remember the sum of ratio along with the variable always gives the number of parts of the whole. Ratio can be well defined as the comparison between two numbers that are without any units. Whereas, when two ratios are set equal to each other are known as the proportion. Four numbers a, b, c, and d are called to be in the proportion. If $ a:b = c:d $ whereas, four numbers are called to be in continued proportion if the terms are expressed as $ a:b = b:c = c:d $
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

