
How many distinct real numbers belong to the following collection?
$ \left\{ {\left. {\ln \left( {2 - \sqrt 3 } \right),\ln \left( {2 + \sqrt 3 } \right), - \ln \left( {2 - \sqrt 3 } \right), - \ln \left( {2 + \sqrt 3 } \right),\ln \left( {\dfrac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }}} \right),\ln (7 + 4\sqrt 3 )} \right\}} \right. $
(A) $ 2 $
(B) $ 3 $
(C) $ 4 $
(D) $ 5 $
Answer
482.7k+ views
Hint: In the question a collection of terms is given and we are asked to find the number of distinct real numbers belonging to the following collection, so take each of the terms separately and simplify it, then repeat the same procedure for all the given terms. Then only, you can find the number of distinct real numbers in collection.
Complete step-by-step answer:
In this question it is given that
$ \left\{ {\left. {\ln \left( {2 - \sqrt 3 } \right),\ln \left( {2 + \sqrt 3 } \right), - \ln \left( {2 - \sqrt 3 } \right), - \ln \left( {2 + \sqrt 3 } \right),\ln \left( {\dfrac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }}} \right),\ln (7 + 4\sqrt 3 )} \right\}} \right. $
We have to find the number of distinct real roots.
So, Case 1:
$ \ln \left( {2 - \sqrt 3 } \right) $ . . . . (given)
On multiplying and dividing with $ \ln \left( {2 + \sqrt 3 } \right) $ we get,
$ \ln \left( {2 - \sqrt 3 } \right) = {\ln \left( {2 - \sqrt 3 } \right) \times \dfrac{{2 + \sqrt 3 }}{{2 + \sqrt 3 }}} $
On simplifying the above equation, we get,
$ \ln \left( {2 - \sqrt 3 } \right) = \ln {\left( {2 + \sqrt 3 } \right)^{ - 1}} $
By using $ \log \left( {\ln } \right) $ properties we get,
$ \ln \left( {2 - \sqrt 3 } \right) = - \ln \left( {2 + \sqrt 3 } \right) $
Case 2:
$ \ln \left( {2 + \sqrt 3 } \right) $ . . . . (given)
We will use the same way which we have used in case (1)
$ \ln \left( {2 + \sqrt 3 } \right) $
On multiplying and dividing with $ \left( {2 + \sqrt 3 } \right) $ in the above equation we get,
$ \ln \left( {2 + \sqrt 3 } \right) = - \ln \left( {2 - \sqrt 3 } \right) $
Case 3:
$ - \ln \left( {2 - \sqrt 3 } \right) $
We will use the same way which we have used in both the above cases.
$ - \ln \left( {2 - \sqrt 3 } \right) $
On multiplying and dividing with $ \left( {2 + \sqrt 3 } \right) $ in above equation we get,
$ - \ln \left( {2 - \sqrt 3 } \right) = \ln \left( {2 + \sqrt 3 } \right) $
Case 4:
$ \ln \left( {2 + \sqrt 3 } \right) $
On multiplying and dividing with $ \left( {2 - \sqrt 3 } \right) $ in the above equation we get ,
$ - \ln \left( {2 + \sqrt 3 } \right) = - \log {\left( {2 - \sqrt 3 } \right)^{ - 1}} $
By applying log rule method in above equation we get,
$ \ln \left( {2 + \sqrt 3 } \right) = \ln \left( {2 - \sqrt 3 } \right) $
Case 5:
$ \ln \left( {\dfrac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }}} \right) $
By multiplying and dividing with $ \left( {2 + \sqrt 3 } \right) $ in above equation we get,
$ \ln \left( {\dfrac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }}} \right) = \ln {\left( {2 + \sqrt 3 } \right)^2} $
By using $ \log $ method we get,
$ \ln \left( {\dfrac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }}} \right) = 2\ln \left( {2 + \sqrt 3 } \right) $
Case 6:
$ \ln (7 + 4\sqrt 3 ) $
$ \ln (7 + 4\sqrt 3 ) $ can also be written as $ \ln \left( {4 + 3 + \sqrt 3 } \right) $
Also, $ \ln \left( {7 + 4\sqrt 3 } \right) = \ln {\left( {2 + \sqrt 3 } \right)^2} $
On applying $ \log $ rule in above equation
We get $ \ln (7 + 4\sqrt 3 ) = 2\ln \left( {2 + \sqrt 3 } \right) $
Now we write all the solved terms from the above.
$ - \ln \left( {2 + \sqrt 3 } \right) $ , $ - \ln \left( {2 - \sqrt 3 } \right) $ , $ \ln \left( {2 + \sqrt 3 } \right) $ , $ \ln \left( {2 - \sqrt 3 } \right) $ , $ \ln \left( {2 + \sqrt 3 } \right) $
There are three common terms. So, the number of distinct value $ = 2 $
Therefore, from the above explanation the correct option is [A] $ 2 $ .
Note: In this type of question it is better to use basic log concepts such as , $ \ln {\left( k \right)^{ - 1}} = - \ln \left( k \right) $ , where $ k \in R $ (i.e. k belongs to any real number).
Complete step-by-step answer:
In this question it is given that
$ \left\{ {\left. {\ln \left( {2 - \sqrt 3 } \right),\ln \left( {2 + \sqrt 3 } \right), - \ln \left( {2 - \sqrt 3 } \right), - \ln \left( {2 + \sqrt 3 } \right),\ln \left( {\dfrac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }}} \right),\ln (7 + 4\sqrt 3 )} \right\}} \right. $
We have to find the number of distinct real roots.
So, Case 1:
$ \ln \left( {2 - \sqrt 3 } \right) $ . . . . (given)
On multiplying and dividing with $ \ln \left( {2 + \sqrt 3 } \right) $ we get,
$ \ln \left( {2 - \sqrt 3 } \right) = {\ln \left( {2 - \sqrt 3 } \right) \times \dfrac{{2 + \sqrt 3 }}{{2 + \sqrt 3 }}} $
On simplifying the above equation, we get,
$ \ln \left( {2 - \sqrt 3 } \right) = \ln {\left( {2 + \sqrt 3 } \right)^{ - 1}} $
By using $ \log \left( {\ln } \right) $ properties we get,
$ \ln \left( {2 - \sqrt 3 } \right) = - \ln \left( {2 + \sqrt 3 } \right) $
Case 2:
$ \ln \left( {2 + \sqrt 3 } \right) $ . . . . (given)
We will use the same way which we have used in case (1)
$ \ln \left( {2 + \sqrt 3 } \right) $
On multiplying and dividing with $ \left( {2 + \sqrt 3 } \right) $ in the above equation we get,
$ \ln \left( {2 + \sqrt 3 } \right) = - \ln \left( {2 - \sqrt 3 } \right) $
Case 3:
$ - \ln \left( {2 - \sqrt 3 } \right) $
We will use the same way which we have used in both the above cases.
$ - \ln \left( {2 - \sqrt 3 } \right) $
On multiplying and dividing with $ \left( {2 + \sqrt 3 } \right) $ in above equation we get,
$ - \ln \left( {2 - \sqrt 3 } \right) = \ln \left( {2 + \sqrt 3 } \right) $
Case 4:
$ \ln \left( {2 + \sqrt 3 } \right) $
On multiplying and dividing with $ \left( {2 - \sqrt 3 } \right) $ in the above equation we get ,
$ - \ln \left( {2 + \sqrt 3 } \right) = - \log {\left( {2 - \sqrt 3 } \right)^{ - 1}} $
By applying log rule method in above equation we get,
$ \ln \left( {2 + \sqrt 3 } \right) = \ln \left( {2 - \sqrt 3 } \right) $
Case 5:
$ \ln \left( {\dfrac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }}} \right) $
By multiplying and dividing with $ \left( {2 + \sqrt 3 } \right) $ in above equation we get,
$ \ln \left( {\dfrac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }}} \right) = \ln {\left( {2 + \sqrt 3 } \right)^2} $
By using $ \log $ method we get,
$ \ln \left( {\dfrac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }}} \right) = 2\ln \left( {2 + \sqrt 3 } \right) $
Case 6:
$ \ln (7 + 4\sqrt 3 ) $
$ \ln (7 + 4\sqrt 3 ) $ can also be written as $ \ln \left( {4 + 3 + \sqrt 3 } \right) $
Also, $ \ln \left( {7 + 4\sqrt 3 } \right) = \ln {\left( {2 + \sqrt 3 } \right)^2} $
On applying $ \log $ rule in above equation
We get $ \ln (7 + 4\sqrt 3 ) = 2\ln \left( {2 + \sqrt 3 } \right) $
Now we write all the solved terms from the above.
$ - \ln \left( {2 + \sqrt 3 } \right) $ , $ - \ln \left( {2 - \sqrt 3 } \right) $ , $ \ln \left( {2 + \sqrt 3 } \right) $ , $ \ln \left( {2 - \sqrt 3 } \right) $ , $ \ln \left( {2 + \sqrt 3 } \right) $
There are three common terms. So, the number of distinct value $ = 2 $
Therefore, from the above explanation the correct option is [A] $ 2 $ .
Note: In this type of question it is better to use basic log concepts such as , $ \ln {\left( k \right)^{ - 1}} = - \ln \left( k \right) $ , where $ k \in R $ (i.e. k belongs to any real number).
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Explain the system of Dual Government class 8 social science CBSE

What is Kayal in Geography class 8 social science CBSE

Who is the author of Kadambari AKalidas B Panini C class 8 social science CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Advantages and disadvantages of science

Write the smallest number divisible by both 306 and class 8 maths CBSE
