
What is the distance of fish F seen by human eyes E
(A). $H+\dfrac{H}{2\mu }$
(B). $\dfrac{H}{\mu }=\dfrac{H}{2}$
(C). $\dfrac{3H}{2\mu }$
(D). None of these
Answer
542.7k+ views
Hint: The observer and the object are in different mediums. Therefore, the observer can see the object at a different height than its original height. The refractive index is a measure of the density of a medium relative to air in terms of speed of light. The ratio of real height to apparent height of the object is the refractive index of the medium.
Formula used:
$\mu =\dfrac{h}{h'}$
Complete step-by-step answer:
In the given figure, the observer is in the rarer medium and it is observing the fish in denser medium. Therefore, the light travels from rarer medium to denser medium.
The refractive index of a medium is the ratio of the speed of light in the air to the speed of light in medium.
When the object is in the denser medium, the refractive index is given by-
$\mu =\dfrac{h}{h'}$ - (1)
Here, $\mu $ is the refractive index
$h'$ is the apparent height
$h$ is the real height
The real height of the fish is the distance from the eye, from the figure the real height is-
$\begin{align}
& h=H+\dfrac{H}{2} \\
& \Rightarrow h=\dfrac{3H}{2} \\
\end{align}$
Therefore, the real height of the fish is $\dfrac{3H}{2}$.
Substituting the value of real height in eq (1), we get,
$\begin{align}
& \mu =\dfrac{h'}{h} \\
& \Rightarrow \mu =\dfrac{\dfrac{3H}{2}}{h'} \\
& \Rightarrow h'=\dfrac{3H}{2\mu } \\
\end{align}$
The depth of the fish as seen from the eyes is $\dfrac{3H}{2\mu }$.
Therefore, the distance of the fish as seen from the eyes is $\dfrac{3H}{2\mu }$.
So, the correct answer is “Option A”.
Note: Refractive index is a constant quantity and is different for different mediums. The denser the medium, the more is the refractive index. When we observe an object in a different medium it appears to be at a different position than its original position, this position is known as apparent height.
Formula used:
$\mu =\dfrac{h}{h'}$
Complete step-by-step answer:
In the given figure, the observer is in the rarer medium and it is observing the fish in denser medium. Therefore, the light travels from rarer medium to denser medium.
The refractive index of a medium is the ratio of the speed of light in the air to the speed of light in medium.
When the object is in the denser medium, the refractive index is given by-
$\mu =\dfrac{h}{h'}$ - (1)
Here, $\mu $ is the refractive index
$h'$ is the apparent height
$h$ is the real height
The real height of the fish is the distance from the eye, from the figure the real height is-
$\begin{align}
& h=H+\dfrac{H}{2} \\
& \Rightarrow h=\dfrac{3H}{2} \\
\end{align}$
Therefore, the real height of the fish is $\dfrac{3H}{2}$.
Substituting the value of real height in eq (1), we get,
$\begin{align}
& \mu =\dfrac{h'}{h} \\
& \Rightarrow \mu =\dfrac{\dfrac{3H}{2}}{h'} \\
& \Rightarrow h'=\dfrac{3H}{2\mu } \\
\end{align}$
The depth of the fish as seen from the eyes is $\dfrac{3H}{2\mu }$.
Therefore, the distance of the fish as seen from the eyes is $\dfrac{3H}{2\mu }$.
So, the correct answer is “Option A”.
Note: Refractive index is a constant quantity and is different for different mediums. The denser the medium, the more is the refractive index. When we observe an object in a different medium it appears to be at a different position than its original position, this position is known as apparent height.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Why cannot DNA pass through cell membranes class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

In a human foetus the limbs and digits develop after class 12 biology CBSE

AABbCc genotype forms how many types of gametes a 4 class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

