
What is the distance between the parallel lines 3x + 4y + 7 = 0 and 3x + 4y – 5 = 0?
(a). \[\dfrac{2}{5}\]
(b). \[\dfrac{{12}}{5}\]
(c). \[\dfrac{5}{{12}}\]
(d). \[\dfrac{3}{5}\]
Answer
588.3k+ views
Hint: The distance between two parallel lines \[ax + by + {c_1} = 0\] and \[ax + by + {c_2} = 0\] is given by the formula \[d = \dfrac{{|{c_1} - {c_2}|}}{{\sqrt {{a^2} + {b^2}} }}\]. Use this formula to find the distance between the given lines.
Complete step-by-step answer:
Two lines are said to be parallel if they do not intersect at any finite point in the space. They always maintain the same distance between them.
The equations of the parallel lines have the x and y coefficient as proportional to each other.
For finding the distance between the two parallel lines, we first express the two equations such that the coefficients of x and y are equal.
We have the equations of two lines as follows:
3x + 4y +7 = 0
3x + 4y – 5 = 0
Hence, we have both equations such that the x and y coefficients are equal.
Now, we use the formula for calculating the distance between two parallel lines \[ax + by + {c_1} = 0\] and \[ax + by + {c_2} = 0\] given as follows:
\[d = \dfrac{{|{c_1} - {c_2}|}}{{\sqrt {{a^2} + {b^2}} }}\]
From the equations of the lines, we have:
\[{c_1} = 7\]
\[{c_2} = - 5\]
a = 3
b = 4
Then, we have:
\[d = \dfrac{{|7 - ( - 5)|}}{{\sqrt {{3^2} + {4^2}} }}\]
Simplifying, we have:
\[d = \dfrac{{|7 + 5|}}{{\sqrt {9 + 16} }}\]
\[d = \dfrac{{|12|}}{{\sqrt {25} }}\]
We know that the square root of 25 is 5. Hence, we have:
\[d = \dfrac{{12}}{5}\]
Hence, the correct answer is option (b).
Note: Note that you should take care of the negative sign in the equation 3x + 4y – 5 = 0 and include it while calculating the distance, otherwise, your answer will be \[\dfrac{2}{5}\], option (a), which is wrong.
Complete step-by-step answer:
Two lines are said to be parallel if they do not intersect at any finite point in the space. They always maintain the same distance between them.
The equations of the parallel lines have the x and y coefficient as proportional to each other.
For finding the distance between the two parallel lines, we first express the two equations such that the coefficients of x and y are equal.
We have the equations of two lines as follows:
3x + 4y +7 = 0
3x + 4y – 5 = 0
Hence, we have both equations such that the x and y coefficients are equal.
Now, we use the formula for calculating the distance between two parallel lines \[ax + by + {c_1} = 0\] and \[ax + by + {c_2} = 0\] given as follows:
\[d = \dfrac{{|{c_1} - {c_2}|}}{{\sqrt {{a^2} + {b^2}} }}\]
From the equations of the lines, we have:
\[{c_1} = 7\]
\[{c_2} = - 5\]
a = 3
b = 4
Then, we have:
\[d = \dfrac{{|7 - ( - 5)|}}{{\sqrt {{3^2} + {4^2}} }}\]
Simplifying, we have:
\[d = \dfrac{{|7 + 5|}}{{\sqrt {9 + 16} }}\]
\[d = \dfrac{{|12|}}{{\sqrt {25} }}\]
We know that the square root of 25 is 5. Hence, we have:
\[d = \dfrac{{12}}{5}\]
Hence, the correct answer is option (b).
Note: Note that you should take care of the negative sign in the equation 3x + 4y – 5 = 0 and include it while calculating the distance, otherwise, your answer will be \[\dfrac{2}{5}\], option (a), which is wrong.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

When was the first election held in India a 194748 class 12 sst CBSE

