
Discuss variation of $ g $ with
(A) Altitude
(B) Depth
Answer
484.8k+ views
Hint : Acceleration due to gravity varies differently with altitude and depth. For altitude, we simply put the height $ h $ in the formula and get the required result. But for its accurate value, we need to calculate the mass of the earth in terms of its density and then change the radius according to the depth.
Formula used:
Acceleration due to gravity is given as,
$\Rightarrow g = \dfrac{{GM}}{{{R^2}}} $
where, $ G $ Universal gravitational constant, $ M $ is the mass of the earth, $ R $ is the radius of the earth.
Complete step by step answer
(a)
Let us calculate $ g $ at a height of $ h $ .
We know that,
$\Rightarrow g = \dfrac{{GM}}{{{R^2}}} $ $ - - - - (1) $
At the height $ h $ , $ R $ changes to $ R + h $
$\Rightarrow R \to R + h $
$\Rightarrow {g_h} = \dfrac{{GM}}{{{{(R + h)}^2}}} $ $ - - - - (2) $
Where, $ {g_h} $ is the value of $ g $ at height $ h $ .
Dividing equation $ (2) $ by $ (1) $ , we get
$\Rightarrow \dfrac{{{g_h}}}{g} = \dfrac{{{R^2}}}{{{{(R + h)}^2}}} $
$\Rightarrow \dfrac{{{g_h}}}{g} = \dfrac{{{R^2}}}{{{R^2}{{(1 + \dfrac{h}{R})}^2}}} $
Cancelling out $ {R^2} $ , we get
$\Rightarrow \dfrac{{{g_h}}}{g} = \dfrac{1}{{{{(1 + \dfrac{h}{R})}^2}}} $
$\Rightarrow \dfrac{{{g_h}}}{g} = {(1 + \dfrac{h}{R})^{ - 2}} $
Using the binomial theorem, we can write is as
$\Rightarrow \dfrac{{{g_h}}}{g} = 1 - \dfrac{{2h}}{R} $
$\Rightarrow {g_h} = \left( {1 - \dfrac{{2h}}{R}} \right)g $
This is the required variation of $ g $ with an altitude $ h $ .
We can vary the value of height i.e. $ h $ and we will get a different value of $ {g_h} $ .
(b)
The density of earth is given as,
$\Rightarrow \rho = \dfrac{M}{V} $
$\Rightarrow M = \rho V $ $ - - - - (3) $
For earth, $ V $ can be written as
$\Rightarrow V = \dfrac{4}{3}\pi {R^3} $
Using this in equation $ (3) $ , we get
$\Rightarrow M = \rho \times \dfrac{4}{3}\pi {R^3} $
We use this value of $ M $ in equation $ (1) $
$\Rightarrow g = \dfrac{{G \times \rho \times \dfrac{4}{3}\pi {R^3}}}{{{R^2}}} $
$\Rightarrow g = G \times \rho \times \dfrac{4}{3}\pi R $ $ - - - - (5) $
Now, the value of $ g $ at a depth $ d $ is given as
$\Rightarrow {g_d} = G \times \rho \times \dfrac{4}{3}\pi \left( {R - d} \right) $ $ - - - - (6) $
Dividing equation $ (6) $ by $ (5) $ , we get
$\Rightarrow \dfrac{{{g_d}}}{g} = \dfrac{{G \times \rho \times \dfrac{4}{3}\pi \left( {R - d} \right)}}{{G \times \rho \times \dfrac{4}{3}\pi R}} $
$\Rightarrow \dfrac{{{g_d}}}{g} = \dfrac{{\left( {R - d} \right)}}{R} $
We can write this as
$\Rightarrow \dfrac{{{g_d}}}{g} = \left( {1 - \dfrac{d}{R}} \right) $
$\Rightarrow {g_d} = \left( {1 - \dfrac{d}{R}} \right)g $
This is the required variation of $ g $ with depth.
In this case of measuring $ g $ at a depth $ d $ , we can vary the value of $ d $ and we will get different values of $ {g_d} $ .
Note
In the case of measuring $ g $ at an altitude of $ h $ , while using binomial theorem, we make an assumption that $ h < < R $ . Thus this formula holds true only for those cases where the height at which we are measuring $ g $ is negligible with respect to $ R $ .
Formula used:
Acceleration due to gravity is given as,
$\Rightarrow g = \dfrac{{GM}}{{{R^2}}} $
where, $ G $ Universal gravitational constant, $ M $ is the mass of the earth, $ R $ is the radius of the earth.
Complete step by step answer
(a)
Let us calculate $ g $ at a height of $ h $ .
We know that,
$\Rightarrow g = \dfrac{{GM}}{{{R^2}}} $ $ - - - - (1) $
At the height $ h $ , $ R $ changes to $ R + h $
$\Rightarrow R \to R + h $
$\Rightarrow {g_h} = \dfrac{{GM}}{{{{(R + h)}^2}}} $ $ - - - - (2) $
Where, $ {g_h} $ is the value of $ g $ at height $ h $ .
Dividing equation $ (2) $ by $ (1) $ , we get
$\Rightarrow \dfrac{{{g_h}}}{g} = \dfrac{{{R^2}}}{{{{(R + h)}^2}}} $
$\Rightarrow \dfrac{{{g_h}}}{g} = \dfrac{{{R^2}}}{{{R^2}{{(1 + \dfrac{h}{R})}^2}}} $
Cancelling out $ {R^2} $ , we get
$\Rightarrow \dfrac{{{g_h}}}{g} = \dfrac{1}{{{{(1 + \dfrac{h}{R})}^2}}} $
$\Rightarrow \dfrac{{{g_h}}}{g} = {(1 + \dfrac{h}{R})^{ - 2}} $
Using the binomial theorem, we can write is as
$\Rightarrow \dfrac{{{g_h}}}{g} = 1 - \dfrac{{2h}}{R} $
$\Rightarrow {g_h} = \left( {1 - \dfrac{{2h}}{R}} \right)g $
This is the required variation of $ g $ with an altitude $ h $ .
We can vary the value of height i.e. $ h $ and we will get a different value of $ {g_h} $ .
(b)
The density of earth is given as,
$\Rightarrow \rho = \dfrac{M}{V} $
$\Rightarrow M = \rho V $ $ - - - - (3) $
For earth, $ V $ can be written as
$\Rightarrow V = \dfrac{4}{3}\pi {R^3} $
Using this in equation $ (3) $ , we get
$\Rightarrow M = \rho \times \dfrac{4}{3}\pi {R^3} $
We use this value of $ M $ in equation $ (1) $
$\Rightarrow g = \dfrac{{G \times \rho \times \dfrac{4}{3}\pi {R^3}}}{{{R^2}}} $
$\Rightarrow g = G \times \rho \times \dfrac{4}{3}\pi R $ $ - - - - (5) $
Now, the value of $ g $ at a depth $ d $ is given as
$\Rightarrow {g_d} = G \times \rho \times \dfrac{4}{3}\pi \left( {R - d} \right) $ $ - - - - (6) $
Dividing equation $ (6) $ by $ (5) $ , we get
$\Rightarrow \dfrac{{{g_d}}}{g} = \dfrac{{G \times \rho \times \dfrac{4}{3}\pi \left( {R - d} \right)}}{{G \times \rho \times \dfrac{4}{3}\pi R}} $
$\Rightarrow \dfrac{{{g_d}}}{g} = \dfrac{{\left( {R - d} \right)}}{R} $
We can write this as
$\Rightarrow \dfrac{{{g_d}}}{g} = \left( {1 - \dfrac{d}{R}} \right) $
$\Rightarrow {g_d} = \left( {1 - \dfrac{d}{R}} \right)g $
This is the required variation of $ g $ with depth.
In this case of measuring $ g $ at a depth $ d $ , we can vary the value of $ d $ and we will get different values of $ {g_d} $ .
Note
In the case of measuring $ g $ at an altitude of $ h $ , while using binomial theorem, we make an assumption that $ h < < R $ . Thus this formula holds true only for those cases where the height at which we are measuring $ g $ is negligible with respect to $ R $ .
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
