
What is the direction of current density?
Answer
575.4k+ views
Hint: Whenever we hear the word density, the first thing that should strike our mind is the word distribution. For example, words like mass density (just called density in Science), population density, and nuclear density etc. mean that they are talking about the distribution.
Complete step-by-step answer:
The concept of the current density arises from the Ohm’s law expressed in the microscopic form.
Ohm’s law in general, gives us the following expression:
$R = \dfrac{V}{I}$
where R – resistance, V – voltage and I – current.
If we write the microscopic version of the Ohm’s law, we get –
$\rho = \dfrac{E}{J}$
Here, these are corresponding quantities associated with the quantities in the macroscopic or general Ohm’s law:
$\rho $- Resistivity corresponding to Resistance
$E$- electric field corresponding to Voltage
And finally, the quantity J, corresponding to the Current I, is called current density.
Consider the following section of a wire carrying current
Here, the electrons are travelling through the mentioned cross-sectional area of the wire.
The current density is defined as the amount of charge that passes through the given unit area of cross-section as shown:
If $I$ is the current and A is the cross-sectional area, then:
Current density, $J = \dfrac{I}{A}$
This quantity is a vector whose direction is the area vector perpendicular to the area of cross-section.
The direction of this current density is dependent on the area vector. Since, the area vector points towards the direction of the positive flow or the conventional current direction, the direction of the current density is along that of the conventional current and it is opposite to the direction of the actual current flow.
Note: The current density gives us a feel about the distribution of the current over the unit surface area. The current being a scalar quantity, is therefore, defined as the dot product of the current density and the area vector as shown:
$
I = \overrightarrow J .\overrightarrow A \\
I = JA\cos \theta \\
$
Thus, the current will be maximum if the current density vector is along the same direction as that of the area vector.
Complete step-by-step answer:
The concept of the current density arises from the Ohm’s law expressed in the microscopic form.
Ohm’s law in general, gives us the following expression:
$R = \dfrac{V}{I}$
where R – resistance, V – voltage and I – current.
If we write the microscopic version of the Ohm’s law, we get –
$\rho = \dfrac{E}{J}$
Here, these are corresponding quantities associated with the quantities in the macroscopic or general Ohm’s law:
$\rho $- Resistivity corresponding to Resistance
$E$- electric field corresponding to Voltage
And finally, the quantity J, corresponding to the Current I, is called current density.
Consider the following section of a wire carrying current
Here, the electrons are travelling through the mentioned cross-sectional area of the wire.
The current density is defined as the amount of charge that passes through the given unit area of cross-section as shown:
If $I$ is the current and A is the cross-sectional area, then:
Current density, $J = \dfrac{I}{A}$
This quantity is a vector whose direction is the area vector perpendicular to the area of cross-section.
The direction of this current density is dependent on the area vector. Since, the area vector points towards the direction of the positive flow or the conventional current direction, the direction of the current density is along that of the conventional current and it is opposite to the direction of the actual current flow.
Note: The current density gives us a feel about the distribution of the current over the unit surface area. The current being a scalar quantity, is therefore, defined as the dot product of the current density and the area vector as shown:
$
I = \overrightarrow J .\overrightarrow A \\
I = JA\cos \theta \\
$
Thus, the current will be maximum if the current density vector is along the same direction as that of the area vector.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

