
Dimensions of $\dfrac{1}{{{\mu }_{0}}\in_0}$, where symbols have their usual meaning, are:
A. $[{{L}^{-1}}T]$
B. $[{{L}^{-2}}{{T}^{2}}]$
C. $[{{L}^{2}}{{T}^{-2}}]$
D. $[L{{T}^{-1}}]$
Answer
564k+ views
Hint:We are supposed to find the dimensional formula of $\dfrac{1}{{{\mu }_{0}}\in_0}$. For that, we have to identify what ${{\mu }_{0}}$ and $\in_0$ denotes. Further, we can deduce the value from the dimensional formula of these individual elements by finding the degree of dependence of a physical quantity on another. The principle of consistency of two expressions can be used to find the equation relating these two quantities.
We know that ${{\mu }_{0}}$ is the permeability and $\in_0$ is the permittivity of the free space.
Formulas used:
Velocity of light in vacuum$=\dfrac{1}{\sqrt{{{\mu }_{0}}\in_0}}$, where ${{\mu }_{0}}$ is the permeability and $\in_0$ is the permittivity of the free space.
Dimensional formula for velocity = $[L{{T}^{-1}}]$, where $L$ denotes the length or distance and $T$ denotes the time. Here, the time is taken in reverse. This implies the basic formula of velocity, i.e. $\dfrac{displacement}{time}$.
Complete step by step answer:
We know that the Velocity of light in vacuum$=\dfrac{1}{\sqrt{{{\mu }_{0}}\in_0}}$.
i.e. $v=\dfrac{1}{\sqrt{{{\mu }_{0}}\in_0}}$.
Upon squaring, we get ${{v}^{2}}=\dfrac{1}{{{\mu }_{0}}\in_0}$
$\Rightarrow [{{L}^{2}}{{T}^{-2}}]=\dfrac{1}{{{\mu }_{0}}\in_0}$
$\Rightarrow {{[L{{T}^{-1}}]}^{2}}=\dfrac{1}{{{\mu }_{0}}\in_0}$
$\therefore [{{L}^{2}}{{T}^{-2}}]=\dfrac{1}{{{\mu }_{0}}\in_0}$
Therefore, the dimensions of $\dfrac{1}{{{\mu }_{0}}\in_0}$ = $[{{L}^{2}}{{T}^{-2}}]$
Hence, option C is the right choice.
Note:Though this method is widely used, there are few drawbacks for this method. Dimensionless quantities cannot be determined by this method. Constant proportionality cannot be determined by this method. It is not applicable to trigonometric, logarithmic and exponential functions physical quantities which are dependent upon more than three physical quantities, this method will be difficult.
We know that ${{\mu }_{0}}$ is the permeability and $\in_0$ is the permittivity of the free space.
Formulas used:
Velocity of light in vacuum$=\dfrac{1}{\sqrt{{{\mu }_{0}}\in_0}}$, where ${{\mu }_{0}}$ is the permeability and $\in_0$ is the permittivity of the free space.
Dimensional formula for velocity = $[L{{T}^{-1}}]$, where $L$ denotes the length or distance and $T$ denotes the time. Here, the time is taken in reverse. This implies the basic formula of velocity, i.e. $\dfrac{displacement}{time}$.
Complete step by step answer:
We know that the Velocity of light in vacuum$=\dfrac{1}{\sqrt{{{\mu }_{0}}\in_0}}$.
i.e. $v=\dfrac{1}{\sqrt{{{\mu }_{0}}\in_0}}$.
Upon squaring, we get ${{v}^{2}}=\dfrac{1}{{{\mu }_{0}}\in_0}$
$\Rightarrow [{{L}^{2}}{{T}^{-2}}]=\dfrac{1}{{{\mu }_{0}}\in_0}$
$\Rightarrow {{[L{{T}^{-1}}]}^{2}}=\dfrac{1}{{{\mu }_{0}}\in_0}$
$\therefore [{{L}^{2}}{{T}^{-2}}]=\dfrac{1}{{{\mu }_{0}}\in_0}$
Therefore, the dimensions of $\dfrac{1}{{{\mu }_{0}}\in_0}$ = $[{{L}^{2}}{{T}^{-2}}]$
Hence, option C is the right choice.
Note:Though this method is widely used, there are few drawbacks for this method. Dimensionless quantities cannot be determined by this method. Constant proportionality cannot be determined by this method. It is not applicable to trigonometric, logarithmic and exponential functions physical quantities which are dependent upon more than three physical quantities, this method will be difficult.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

