
Differentiate y=$\tan \left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}$ with respect to $x$.
Answer
600.6k+ views
Hint: For solving this question we will use some standard results like differentiation of $y={{x}^{n}}$, $y=\tan x$ and then apply the chain rule of differentiation to differentiate the given term with respect to $x$ correctly.
Complete step-by-step answer:
Given:
We have to differentiate $y=\tan \left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}$ with respect to $x$.
Now, before we proceed we should be familiar with the following formulas and concepts of differential calculus:
1. If $y={{x}^{n}}$, then $\dfrac{dy}{dx}=n{{x}^{n-1}}$.
2. If $y=\tan x$, then $\dfrac{dy}{dx}={{\sec }^{2}}x$.
3. If $y=f\left\{ g\left( x \right) \right\}$, then $\dfrac{dy}{dx}={f}'\left\{ g\left( x \right) \right\}{g}'\left( x \right)$. This is also known as the chain rule of differentiation.
Now, we will use the above-mentioned formulas and concepts to differentiate $y=\tan \left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}$ with respect to $x$.
Now, let $y=\tan \left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}=f\left\{ g\left( x \right) \right\}$. Then,
$f\left( x \right)=\tan x\text{ and }g\left( x \right)=\dfrac{\tan x-1}{\sqrt{\tan x}}={{\left( \tan x \right)}^{{}^{1}/{}_{2}}}-{{\left( \tan x \right)}^{-{}^{1}/{}_{2}}}$
Now, as $f\left( x \right)=\tan x$ so, we can write its differentiation with respect to $x$ from the formula written in the second point. Then,
$\begin{align}
& f\left( x \right)=\tan x \\
& \Rightarrow {f}'\left( x \right)={{\sec }^{2}}x \\
& \Rightarrow {f}'\left\{ g\left( x \right) \right\}={{\sec }^{2}}\left\{ g\left( x \right) \right\} \\
& \Rightarrow {f}'\left\{ g\left( x \right) \right\}={f}'\left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}={{\sec }^{2}}\left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}.................\left( 1 \right) \\
\end{align}$
Now, as $g\left( x \right)={{\left( \tan x \right)}^{{}^{1}/{}_{2}}}-{{\left( \tan x \right)}^{-{}^{1}/{}_{2}}}$ so, we can write its differentiation with respect to $x$ from the formula written in the above points. Then,
\[\begin{align}
& g\left( x \right)={{\left( \tan x \right)}^{{}^{1}/{}_{2}}}-{{\left( \tan x \right)}^{-{}^{1}/{}_{2}}} \\
& \Rightarrow {g}'\left( x \right)=\dfrac{1}{2}{{\left( \tan x \right)}^{\left( \dfrac{1}{2}-1 \right)}}\times {{\sec }^{2}}x-1\times \dfrac{-1}{2}{{\left( \tan x \right)}^{\left( -\dfrac{1}{2}-1 \right)}}\times {{\sec }^{2}}x \\
& \Rightarrow {g}'\left( x \right)=\left[ \dfrac{{{\left( \tan x \right)}^{-\dfrac{1}{2}}}}{2}+\dfrac{{{\left( \tan x \right)}^{-\dfrac{3}{2}}}}{2} \right]{{\sec }^{2}}x \\
& \Rightarrow {g}'\left( x \right)=\dfrac{{{\sec }^{2}}x{{\left( \tan x \right)}^{-\dfrac{3}{2}}}}{2}\left[ \tan x+1 \right]...................\left( 2 \right) \\
\end{align}\]
Now, as per our assumption $y=\tan \left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}=f\left\{ g\left( x \right) \right\}$ so, we can use the chain rule of differentiation to find $\dfrac{dy}{dx}$ . Then,
$\begin{align}
& y=\tan \left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}=f\left\{ g\left( x \right) \right\} \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left\{ g\left( x \right) \right\}{g}'\left( x \right) \\
\end{align}$
Now, substituting expression of ${f}'\left\{ g\left( x \right) \right\}$ from equation (1) and \[{g}'\left( x \right)\] from equation (2) in the above equation. Then,
$\begin{align}
& \dfrac{dy}{dx}={f}'\left\{ g\left( x \right) \right\}{g}'\left( x \right) \\
& \Rightarrow \dfrac{dy}{dx}={{\sec }^{2}}\left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}\times \dfrac{{{\sec }^{2}}x{{\left( \tan x \right)}^{-\dfrac{3}{2}}}}{2}\left[ \tan x+1 \right] \\
\end{align}$
Thus, $\dfrac{dy}{dx}={{\sec }^{2}}\left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}\times \dfrac{{{\sec }^{2}}x{{\left( \tan x \right)}^{-\dfrac{3}{2}}}}{2}\left[ \tan x+1 \right]$ will be the differentiation of given function with respect to $x$.
Note: Here, the student should know how to apply the chain rule of differentiation to find the differentiation of functions of the form $y=f\left\{ g\left( x \right) \right\}$. Moreover, the student should proceed in a stepwise manner in the solution and avoid calculation mistakes while solving to get the correct answer.
Complete step-by-step answer:
Given:
We have to differentiate $y=\tan \left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}$ with respect to $x$.
Now, before we proceed we should be familiar with the following formulas and concepts of differential calculus:
1. If $y={{x}^{n}}$, then $\dfrac{dy}{dx}=n{{x}^{n-1}}$.
2. If $y=\tan x$, then $\dfrac{dy}{dx}={{\sec }^{2}}x$.
3. If $y=f\left\{ g\left( x \right) \right\}$, then $\dfrac{dy}{dx}={f}'\left\{ g\left( x \right) \right\}{g}'\left( x \right)$. This is also known as the chain rule of differentiation.
Now, we will use the above-mentioned formulas and concepts to differentiate $y=\tan \left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}$ with respect to $x$.
Now, let $y=\tan \left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}=f\left\{ g\left( x \right) \right\}$. Then,
$f\left( x \right)=\tan x\text{ and }g\left( x \right)=\dfrac{\tan x-1}{\sqrt{\tan x}}={{\left( \tan x \right)}^{{}^{1}/{}_{2}}}-{{\left( \tan x \right)}^{-{}^{1}/{}_{2}}}$
Now, as $f\left( x \right)=\tan x$ so, we can write its differentiation with respect to $x$ from the formula written in the second point. Then,
$\begin{align}
& f\left( x \right)=\tan x \\
& \Rightarrow {f}'\left( x \right)={{\sec }^{2}}x \\
& \Rightarrow {f}'\left\{ g\left( x \right) \right\}={{\sec }^{2}}\left\{ g\left( x \right) \right\} \\
& \Rightarrow {f}'\left\{ g\left( x \right) \right\}={f}'\left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}={{\sec }^{2}}\left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}.................\left( 1 \right) \\
\end{align}$
Now, as $g\left( x \right)={{\left( \tan x \right)}^{{}^{1}/{}_{2}}}-{{\left( \tan x \right)}^{-{}^{1}/{}_{2}}}$ so, we can write its differentiation with respect to $x$ from the formula written in the above points. Then,
\[\begin{align}
& g\left( x \right)={{\left( \tan x \right)}^{{}^{1}/{}_{2}}}-{{\left( \tan x \right)}^{-{}^{1}/{}_{2}}} \\
& \Rightarrow {g}'\left( x \right)=\dfrac{1}{2}{{\left( \tan x \right)}^{\left( \dfrac{1}{2}-1 \right)}}\times {{\sec }^{2}}x-1\times \dfrac{-1}{2}{{\left( \tan x \right)}^{\left( -\dfrac{1}{2}-1 \right)}}\times {{\sec }^{2}}x \\
& \Rightarrow {g}'\left( x \right)=\left[ \dfrac{{{\left( \tan x \right)}^{-\dfrac{1}{2}}}}{2}+\dfrac{{{\left( \tan x \right)}^{-\dfrac{3}{2}}}}{2} \right]{{\sec }^{2}}x \\
& \Rightarrow {g}'\left( x \right)=\dfrac{{{\sec }^{2}}x{{\left( \tan x \right)}^{-\dfrac{3}{2}}}}{2}\left[ \tan x+1 \right]...................\left( 2 \right) \\
\end{align}\]
Now, as per our assumption $y=\tan \left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}=f\left\{ g\left( x \right) \right\}$ so, we can use the chain rule of differentiation to find $\dfrac{dy}{dx}$ . Then,
$\begin{align}
& y=\tan \left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}=f\left\{ g\left( x \right) \right\} \\
& \Rightarrow \dfrac{dy}{dx}={f}'\left\{ g\left( x \right) \right\}{g}'\left( x \right) \\
\end{align}$
Now, substituting expression of ${f}'\left\{ g\left( x \right) \right\}$ from equation (1) and \[{g}'\left( x \right)\] from equation (2) in the above equation. Then,
$\begin{align}
& \dfrac{dy}{dx}={f}'\left\{ g\left( x \right) \right\}{g}'\left( x \right) \\
& \Rightarrow \dfrac{dy}{dx}={{\sec }^{2}}\left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}\times \dfrac{{{\sec }^{2}}x{{\left( \tan x \right)}^{-\dfrac{3}{2}}}}{2}\left[ \tan x+1 \right] \\
\end{align}$
Thus, $\dfrac{dy}{dx}={{\sec }^{2}}\left\{ \dfrac{\tan x-1}{\sqrt{\tan x}} \right\}\times \dfrac{{{\sec }^{2}}x{{\left( \tan x \right)}^{-\dfrac{3}{2}}}}{2}\left[ \tan x+1 \right]$ will be the differentiation of given function with respect to $x$.
Note: Here, the student should know how to apply the chain rule of differentiation to find the differentiation of functions of the form $y=f\left\{ g\left( x \right) \right\}$. Moreover, the student should proceed in a stepwise manner in the solution and avoid calculation mistakes while solving to get the correct answer.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

