Differentiate \[{x^x}\] with respect to x log x.
(A) \[{x^x}\]
(B) \[\dfrac{1}{x}\]
(C) \[{x^{x + 1}}\]
(D) None of these
Answer
Verified
480.3k+ views
Hint: We can use chain Rule and Product Rule to differentiate both sides. We assume that \[u = {x^2}\,\,\,\nu = x\,\,\log \,\,x\]. Thereafter, taking log both sides of both values and then we will differentiate the value with respect to x.
Complete step by step solution:
\[u = {x^x}\,\,\,\nu = \log \,x\]
\[u = {x^x}\,\]
Taking log on both sides, we will get
\[
u = {x^x}\, \\
\log u = \log {x^x} \\
\log u = x\log x \\
\] $\left( {\because \log \,{a^m} = m\log a} \right)$
Now differentiate both sides, we will get
\[\dfrac{d}{{dx}}\,\,\left( {\log \,\,u} \right) = \dfrac{d}{{dx}}\left( {x\log x} \right)\]
\[\dfrac{1}{u}\,\,\dfrac{{du}}{{dx}} = \dfrac{d}{x}\left( x \right)\,\,.\,\,\log x + x\,\,.\,\,\dfrac{d}{{dx}}\left( {\log x} \right)\,\,\,\left[ {Chain\,\,Rule} \right]\]
\[\dfrac{{du}}{{dx}} = \,\,u\left[ {\log \,x + \dfrac{x}{x}} \right]\]
As, we know that $u = {x^x}$
\[\dfrac{{du}}{{dx}} = \,\,{x^x}\left( {\log x + 1} \right)\] \[.......(i)\]
We will solve \[\nu = x\log x\] part
\[\nu = x\log x\]
\[\dfrac{d}{{dx}}\left( \nu \right) = \dfrac{{dx}}{{dx}}\left( {x\left( {\log x} \right)} \right)\,\,\,\left[ {{\text{Product}}\,\,{\text{Rule}}} \right]\]
\[\dfrac{{d\nu }}{{dx}} = x\dfrac{d}{{dx}}\left( {\log x} \right)\, + \log x\,\,.\,\,\dfrac{d}{{d\left( x \right)}}\left( x \right)\]
\[ = x\dfrac{1}{x} + \log \left( x \right).1\]
\[\dfrac{{d\nu }}{{dx}} = 1 + \log x\] $........(ii)$
Divide equation \[(i)\]and $(ii)$ , we have
\[
\dfrac{{du}}{{d\nu }} = \dfrac{{d\nu /dx}}{{d\nu /dx}} \\
= \dfrac{{{x^2}\left( {\log x + 1} \right)}}{{\left( {\log x + 1} \right)}} \\
\]
\[ = {x^x}\,\,Answer\]
Option (A) is correct
Note: Chain rule states that the derivative of $f\left[ {g\left( x \right)} \right]$ is${f^1}\left[ {g\left( x \right)} \right]{g^1}\left( x \right)$.
Product rule is also a formula of products used to find the derivatives of products of two or more functions.
Complete step by step solution:
\[u = {x^x}\,\,\,\nu = \log \,x\]
\[u = {x^x}\,\]
Taking log on both sides, we will get
\[
u = {x^x}\, \\
\log u = \log {x^x} \\
\log u = x\log x \\
\] $\left( {\because \log \,{a^m} = m\log a} \right)$
Now differentiate both sides, we will get
\[\dfrac{d}{{dx}}\,\,\left( {\log \,\,u} \right) = \dfrac{d}{{dx}}\left( {x\log x} \right)\]
\[\dfrac{1}{u}\,\,\dfrac{{du}}{{dx}} = \dfrac{d}{x}\left( x \right)\,\,.\,\,\log x + x\,\,.\,\,\dfrac{d}{{dx}}\left( {\log x} \right)\,\,\,\left[ {Chain\,\,Rule} \right]\]
\[\dfrac{{du}}{{dx}} = \,\,u\left[ {\log \,x + \dfrac{x}{x}} \right]\]
As, we know that $u = {x^x}$
\[\dfrac{{du}}{{dx}} = \,\,{x^x}\left( {\log x + 1} \right)\] \[.......(i)\]
We will solve \[\nu = x\log x\] part
\[\nu = x\log x\]
\[\dfrac{d}{{dx}}\left( \nu \right) = \dfrac{{dx}}{{dx}}\left( {x\left( {\log x} \right)} \right)\,\,\,\left[ {{\text{Product}}\,\,{\text{Rule}}} \right]\]
\[\dfrac{{d\nu }}{{dx}} = x\dfrac{d}{{dx}}\left( {\log x} \right)\, + \log x\,\,.\,\,\dfrac{d}{{d\left( x \right)}}\left( x \right)\]
\[ = x\dfrac{1}{x} + \log \left( x \right).1\]
\[\dfrac{{d\nu }}{{dx}} = 1 + \log x\] $........(ii)$
Divide equation \[(i)\]and $(ii)$ , we have
\[
\dfrac{{du}}{{d\nu }} = \dfrac{{d\nu /dx}}{{d\nu /dx}} \\
= \dfrac{{{x^2}\left( {\log x + 1} \right)}}{{\left( {\log x + 1} \right)}} \\
\]
\[ = {x^x}\,\,Answer\]
Option (A) is correct
Note: Chain rule states that the derivative of $f\left[ {g\left( x \right)} \right]$ is${f^1}\left[ {g\left( x \right)} \right]{g^1}\left( x \right)$.
Product rule is also a formula of products used to find the derivatives of products of two or more functions.
Recently Updated Pages
Using the following information to help you answer class 12 chemistry CBSE
Basicity of sulphurous acid and sulphuric acid are
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Trending doubts
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Figure shows a conducting loop ABCDA placed in a uniform class 12 physics CBSE
Explain with a neat labelled diagram the TS of mammalian class 12 biology CBSE
The first general election of Lok Sabha was held in class 12 social science CBSE
How do you convert from joules to electron volts class 12 physics CBSE
The term ecosystem was coined by a EP Odum b AG Tansley class 12 biology CBSE