
Differentiate \[{x^{\sin x}}\],\[x > 0\] with respect to x.
Answer
549k+ views
Hint: We use the concept of log in this question. Write the value given equal to a different variable and apply logarithm on both sides of the equation. Use the property of log and break the right hand side. Differentiate using product rule of differentiation.
* \[\log {m^n} = n\log m\]
* \[\log m + \log n = \log mn\]
* Product rule of differentiation:\[\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}(b) + b\dfrac{d}{{dx}}(a)\]
* Chain rule of differentiation:\[\dfrac{d}{{dx}}g\left( {f(x)} \right) = \dfrac{d}{{dx}}g(f(x)) \times \dfrac{d}{{dx}}f(x)\]
Complete step-by-step answer:
We have to find\[\dfrac{d}{{dx}}({x^{\sin x}})\]
Here the function is \[{x^{\sin x}}\]
Let us assume the function equal to a variable y.
Let\[y = {x^{\sin x}}\] … (1)
Now we apply log function on both sides of the equation.
\[ \Rightarrow \log y = \log ({x^{\sin x}})\]
Use the property\[\log {m^n} = n\log m\]where m is x and n is x.
\[ \Rightarrow \log y = \sin x(\log x)\]
Now differentiate both sides of the equation with respect to x
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {\sin x(\log x)} \right)\]
Apply chain rule of differentiation in LHs of the equation
Chain rule gives us\[\dfrac{d}{{dx}}g\left( {f(x)} \right) = \dfrac{d}{{dx}}g(f(x)) \times \dfrac{d}{{dx}}f(x)\].
Here\[g(f(x)) = \log (y),f(x) = y\], then the equation becomes
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) \times \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\sin x(\log x)} \right)\]
We know \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\sin x(\log x)} \right)\]
Now apply product rule of differentiation in RHS of the equation
Product rule gives us\[\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}(b) + b\dfrac{d}{{dx}}(a)\]
Here\[a = \sin x,b = \log x\], then the equation becomes
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \sin x\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}\sin x\]
Substitute the values\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]and\[\dfrac{d}{{dx}}\sin = \cos x\]in RHS of the equation
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \sin x \times \dfrac{1}{x} + \log x \times \cos x\]
Multiply the terms in RHS of the equation
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \dfrac{{\sin x}}{x} + \log x.\cos x\]
Multiply both sides of the equation by y
\[ \Rightarrow y \times \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = y \times \left( {\dfrac{{\sin x}}{x} + \log x.\cos x} \right)\]
Cancel same function from numerator and denominator in LHS of the equation
\[ \Rightarrow \dfrac{{dy}}{{dx}} = y\left( {\dfrac{{\sin x}}{x} + \log x.\cos x} \right)\]
Substitute the value of \[y = {x^{\sin x}}\]from equation (1)
\[ \Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x}}\left( {\dfrac{{\sin x}}{x} + \log x.\cos x} \right)\]
Take LCM in right side of the equation
\[ \Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x}}\left( {\dfrac{{\sin x + x\log x\cos x}}{x}} \right)\]
Since we can write \[\dfrac{1}{x} = {x^{ - 1}}\]
\[ \Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x}}.{x^{ - 1}}\left( {\sin x + x\log x\cos x} \right)\]
We have x as same base so we can add the powers
\[ \Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x - 1}}\left( {\sin x + x\log x\cos x} \right)\]
\[\therefore \]Differentiation of \[{x^{\sin x}}\]with respect to x is \[{x^{\sin x - 1}}\left( {\sin x + x\log x\cos x} \right)\]
Note:
Students many times make the mistake of writing the final answer of differentiation without shifting or removing the value of y from the left hand side of the equation. Keep in mind we only need the value of differentiation of y with respect to x i.e. differentiation of the given function with respect to x.
* \[\log {m^n} = n\log m\]
* \[\log m + \log n = \log mn\]
* Product rule of differentiation:\[\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}(b) + b\dfrac{d}{{dx}}(a)\]
* Chain rule of differentiation:\[\dfrac{d}{{dx}}g\left( {f(x)} \right) = \dfrac{d}{{dx}}g(f(x)) \times \dfrac{d}{{dx}}f(x)\]
Complete step-by-step answer:
We have to find\[\dfrac{d}{{dx}}({x^{\sin x}})\]
Here the function is \[{x^{\sin x}}\]
Let us assume the function equal to a variable y.
Let\[y = {x^{\sin x}}\] … (1)
Now we apply log function on both sides of the equation.
\[ \Rightarrow \log y = \log ({x^{\sin x}})\]
Use the property\[\log {m^n} = n\log m\]where m is x and n is x.
\[ \Rightarrow \log y = \sin x(\log x)\]
Now differentiate both sides of the equation with respect to x
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {\sin x(\log x)} \right)\]
Apply chain rule of differentiation in LHs of the equation
Chain rule gives us\[\dfrac{d}{{dx}}g\left( {f(x)} \right) = \dfrac{d}{{dx}}g(f(x)) \times \dfrac{d}{{dx}}f(x)\].
Here\[g(f(x)) = \log (y),f(x) = y\], then the equation becomes
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) \times \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\sin x(\log x)} \right)\]
We know \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\sin x(\log x)} \right)\]
Now apply product rule of differentiation in RHS of the equation
Product rule gives us\[\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}(b) + b\dfrac{d}{{dx}}(a)\]
Here\[a = \sin x,b = \log x\], then the equation becomes
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \sin x\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}\sin x\]
Substitute the values\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]and\[\dfrac{d}{{dx}}\sin = \cos x\]in RHS of the equation
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \sin x \times \dfrac{1}{x} + \log x \times \cos x\]
Multiply the terms in RHS of the equation
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \dfrac{{\sin x}}{x} + \log x.\cos x\]
Multiply both sides of the equation by y
\[ \Rightarrow y \times \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = y \times \left( {\dfrac{{\sin x}}{x} + \log x.\cos x} \right)\]
Cancel same function from numerator and denominator in LHS of the equation
\[ \Rightarrow \dfrac{{dy}}{{dx}} = y\left( {\dfrac{{\sin x}}{x} + \log x.\cos x} \right)\]
Substitute the value of \[y = {x^{\sin x}}\]from equation (1)
\[ \Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x}}\left( {\dfrac{{\sin x}}{x} + \log x.\cos x} \right)\]
Take LCM in right side of the equation
\[ \Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x}}\left( {\dfrac{{\sin x + x\log x\cos x}}{x}} \right)\]
Since we can write \[\dfrac{1}{x} = {x^{ - 1}}\]
\[ \Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x}}.{x^{ - 1}}\left( {\sin x + x\log x\cos x} \right)\]
We have x as same base so we can add the powers
\[ \Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x - 1}}\left( {\sin x + x\log x\cos x} \right)\]
\[\therefore \]Differentiation of \[{x^{\sin x}}\]with respect to x is \[{x^{\sin x - 1}}\left( {\sin x + x\log x\cos x} \right)\]
Note:
Students many times make the mistake of writing the final answer of differentiation without shifting or removing the value of y from the left hand side of the equation. Keep in mind we only need the value of differentiation of y with respect to x i.e. differentiation of the given function with respect to x.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

