
Differentiate \[{x^{\sin x}}\],\[x > 0\] with respect to x.
Answer
563.1k+ views
Hint: We use the concept of log in this question. Write the value given equal to a different variable and apply logarithm on both sides of the equation. Use the property of log and break the right hand side. Differentiate using product rule of differentiation.
* \[\log {m^n} = n\log m\]
* \[\log m + \log n = \log mn\]
* Product rule of differentiation:\[\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}(b) + b\dfrac{d}{{dx}}(a)\]
* Chain rule of differentiation:\[\dfrac{d}{{dx}}g\left( {f(x)} \right) = \dfrac{d}{{dx}}g(f(x)) \times \dfrac{d}{{dx}}f(x)\]
Complete step-by-step answer:
We have to find\[\dfrac{d}{{dx}}({x^{\sin x}})\]
Here the function is \[{x^{\sin x}}\]
Let us assume the function equal to a variable y.
Let\[y = {x^{\sin x}}\] … (1)
Now we apply log function on both sides of the equation.
\[ \Rightarrow \log y = \log ({x^{\sin x}})\]
Use the property\[\log {m^n} = n\log m\]where m is x and n is x.
\[ \Rightarrow \log y = \sin x(\log x)\]
Now differentiate both sides of the equation with respect to x
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {\sin x(\log x)} \right)\]
Apply chain rule of differentiation in LHs of the equation
Chain rule gives us\[\dfrac{d}{{dx}}g\left( {f(x)} \right) = \dfrac{d}{{dx}}g(f(x)) \times \dfrac{d}{{dx}}f(x)\].
Here\[g(f(x)) = \log (y),f(x) = y\], then the equation becomes
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) \times \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\sin x(\log x)} \right)\]
We know \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\sin x(\log x)} \right)\]
Now apply product rule of differentiation in RHS of the equation
Product rule gives us\[\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}(b) + b\dfrac{d}{{dx}}(a)\]
Here\[a = \sin x,b = \log x\], then the equation becomes
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \sin x\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}\sin x\]
Substitute the values\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]and\[\dfrac{d}{{dx}}\sin = \cos x\]in RHS of the equation
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \sin x \times \dfrac{1}{x} + \log x \times \cos x\]
Multiply the terms in RHS of the equation
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \dfrac{{\sin x}}{x} + \log x.\cos x\]
Multiply both sides of the equation by y
\[ \Rightarrow y \times \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = y \times \left( {\dfrac{{\sin x}}{x} + \log x.\cos x} \right)\]
Cancel same function from numerator and denominator in LHS of the equation
\[ \Rightarrow \dfrac{{dy}}{{dx}} = y\left( {\dfrac{{\sin x}}{x} + \log x.\cos x} \right)\]
Substitute the value of \[y = {x^{\sin x}}\]from equation (1)
\[ \Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x}}\left( {\dfrac{{\sin x}}{x} + \log x.\cos x} \right)\]
Take LCM in right side of the equation
\[ \Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x}}\left( {\dfrac{{\sin x + x\log x\cos x}}{x}} \right)\]
Since we can write \[\dfrac{1}{x} = {x^{ - 1}}\]
\[ \Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x}}.{x^{ - 1}}\left( {\sin x + x\log x\cos x} \right)\]
We have x as same base so we can add the powers
\[ \Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x - 1}}\left( {\sin x + x\log x\cos x} \right)\]
\[\therefore \]Differentiation of \[{x^{\sin x}}\]with respect to x is \[{x^{\sin x - 1}}\left( {\sin x + x\log x\cos x} \right)\]
Note:
Students many times make the mistake of writing the final answer of differentiation without shifting or removing the value of y from the left hand side of the equation. Keep in mind we only need the value of differentiation of y with respect to x i.e. differentiation of the given function with respect to x.
* \[\log {m^n} = n\log m\]
* \[\log m + \log n = \log mn\]
* Product rule of differentiation:\[\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}(b) + b\dfrac{d}{{dx}}(a)\]
* Chain rule of differentiation:\[\dfrac{d}{{dx}}g\left( {f(x)} \right) = \dfrac{d}{{dx}}g(f(x)) \times \dfrac{d}{{dx}}f(x)\]
Complete step-by-step answer:
We have to find\[\dfrac{d}{{dx}}({x^{\sin x}})\]
Here the function is \[{x^{\sin x}}\]
Let us assume the function equal to a variable y.
Let\[y = {x^{\sin x}}\] … (1)
Now we apply log function on both sides of the equation.
\[ \Rightarrow \log y = \log ({x^{\sin x}})\]
Use the property\[\log {m^n} = n\log m\]where m is x and n is x.
\[ \Rightarrow \log y = \sin x(\log x)\]
Now differentiate both sides of the equation with respect to x
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {\sin x(\log x)} \right)\]
Apply chain rule of differentiation in LHs of the equation
Chain rule gives us\[\dfrac{d}{{dx}}g\left( {f(x)} \right) = \dfrac{d}{{dx}}g(f(x)) \times \dfrac{d}{{dx}}f(x)\].
Here\[g(f(x)) = \log (y),f(x) = y\], then the equation becomes
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) \times \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\sin x(\log x)} \right)\]
We know \[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\sin x(\log x)} \right)\]
Now apply product rule of differentiation in RHS of the equation
Product rule gives us\[\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}(b) + b\dfrac{d}{{dx}}(a)\]
Here\[a = \sin x,b = \log x\], then the equation becomes
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \sin x\dfrac{d}{{dx}}\log x + \log x\dfrac{d}{{dx}}\sin x\]
Substitute the values\[\dfrac{d}{{dx}}\log x = \dfrac{1}{x}\]and\[\dfrac{d}{{dx}}\sin = \cos x\]in RHS of the equation
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \sin x \times \dfrac{1}{x} + \log x \times \cos x\]
Multiply the terms in RHS of the equation
\[ \Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = \dfrac{{\sin x}}{x} + \log x.\cos x\]
Multiply both sides of the equation by y
\[ \Rightarrow y \times \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = y \times \left( {\dfrac{{\sin x}}{x} + \log x.\cos x} \right)\]
Cancel same function from numerator and denominator in LHS of the equation
\[ \Rightarrow \dfrac{{dy}}{{dx}} = y\left( {\dfrac{{\sin x}}{x} + \log x.\cos x} \right)\]
Substitute the value of \[y = {x^{\sin x}}\]from equation (1)
\[ \Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x}}\left( {\dfrac{{\sin x}}{x} + \log x.\cos x} \right)\]
Take LCM in right side of the equation
\[ \Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x}}\left( {\dfrac{{\sin x + x\log x\cos x}}{x}} \right)\]
Since we can write \[\dfrac{1}{x} = {x^{ - 1}}\]
\[ \Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x}}.{x^{ - 1}}\left( {\sin x + x\log x\cos x} \right)\]
We have x as same base so we can add the powers
\[ \Rightarrow \dfrac{d}{{dx}}({x^{\sin x}}) = {x^{\sin x - 1}}\left( {\sin x + x\log x\cos x} \right)\]
\[\therefore \]Differentiation of \[{x^{\sin x}}\]with respect to x is \[{x^{\sin x - 1}}\left( {\sin x + x\log x\cos x} \right)\]
Note:
Students many times make the mistake of writing the final answer of differentiation without shifting or removing the value of y from the left hand side of the equation. Keep in mind we only need the value of differentiation of y with respect to x i.e. differentiation of the given function with respect to x.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

