
Differentiate with respect to\[\theta \]:
\[\theta {x^2} + 9{y^2}\]
Answer
514.2k+ views
Hint: It is easily solved by simple derivation with respect to \[\theta \]. Except x and y variables are constant so, x we will differentiate $\theta $ only.
Complete step by step solution:
Let \[y' = \theta {x^2} + 9{y^2}\]
Now, differentiate with respect\[\theta \].So y and x are constant terms.
\[\dfrac{{dy'}}{{d\theta }} = \dfrac{d}{{d\theta }}\left( {\theta {x^2} + 9{y^2}} \right)\]
\[ \Rightarrow \dfrac{{d{y^,}}}{{d\theta }} = \,\dfrac{d}{{d\theta }}\left( {\theta {x^2}} \right) + \dfrac{d}{{d\theta }}\left( {9{y^2}} \right)\] \[\left[ {\because \,\,\dfrac{d}{{dx}}\left( {f\left( x \right) + g\left( x \right)} \right)\,\, = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) + \dfrac{d}{{dx}}\left( {g\left( x \right)} \right)} \right]\] \[ \Rightarrow \dfrac{{d{y^,}}}{{d\theta }} = \,{x^2}\dfrac{d}{{d\theta }}\left( \theta \right) + 9{y^2}\dfrac{d}{{d\theta }}\left( 1 \right)\]
\[ \Rightarrow \dfrac{{dy}}{{d\theta }} = \,1 \times {x^2} + 9{y^2}.0\]
\[ \Rightarrow \dfrac{{dy}}{{d\theta }} = \,1 \times {x^2} + 0\]
\[
\Rightarrow \dfrac{{d{y^,}}}{{d\theta }}\, = {x^2} + 0 \\
\Rightarrow \dfrac{{d{y^,}}}{{d\theta }} = {x^2} \\
\]
Additional information: Differentiation is a process of finding the derivative, or rate of change, of a function. Differentiation rules:
(i) The constant rule: for any fixed real number $c$.\[\dfrac{d}{{dx}}\left\{ {c.f(x)} \right\} = c.\dfrac{d}{{dx}}\left\{ {f(x)} \right\}\]
(ii) The power rule: $\dfrac{d}{{dx}}\left\{ {{x^n}} \right\} = n{x^{n - 1}}$
Note: We can solve similar question by simple derivation as
\[\left( {\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) + g\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) + \dfrac{d}{{dx}}\left( {g\left( x \right)} \right)} \right)\]
Complete step by step solution:
Let \[y' = \theta {x^2} + 9{y^2}\]
Now, differentiate with respect\[\theta \].So y and x are constant terms.
\[\dfrac{{dy'}}{{d\theta }} = \dfrac{d}{{d\theta }}\left( {\theta {x^2} + 9{y^2}} \right)\]
\[ \Rightarrow \dfrac{{d{y^,}}}{{d\theta }} = \,\dfrac{d}{{d\theta }}\left( {\theta {x^2}} \right) + \dfrac{d}{{d\theta }}\left( {9{y^2}} \right)\] \[\left[ {\because \,\,\dfrac{d}{{dx}}\left( {f\left( x \right) + g\left( x \right)} \right)\,\, = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) + \dfrac{d}{{dx}}\left( {g\left( x \right)} \right)} \right]\] \[ \Rightarrow \dfrac{{d{y^,}}}{{d\theta }} = \,{x^2}\dfrac{d}{{d\theta }}\left( \theta \right) + 9{y^2}\dfrac{d}{{d\theta }}\left( 1 \right)\]
\[ \Rightarrow \dfrac{{dy}}{{d\theta }} = \,1 \times {x^2} + 9{y^2}.0\]
\[ \Rightarrow \dfrac{{dy}}{{d\theta }} = \,1 \times {x^2} + 0\]
\[
\Rightarrow \dfrac{{d{y^,}}}{{d\theta }}\, = {x^2} + 0 \\
\Rightarrow \dfrac{{d{y^,}}}{{d\theta }} = {x^2} \\
\]
Additional information: Differentiation is a process of finding the derivative, or rate of change, of a function. Differentiation rules:
(i) The constant rule: for any fixed real number $c$.\[\dfrac{d}{{dx}}\left\{ {c.f(x)} \right\} = c.\dfrac{d}{{dx}}\left\{ {f(x)} \right\}\]
(ii) The power rule: $\dfrac{d}{{dx}}\left\{ {{x^n}} \right\} = n{x^{n - 1}}$
Note: We can solve similar question by simple derivation as
\[\left( {\dfrac{d}{{dx}}\left( {f\left( x \right)} \right) + g\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) + \dfrac{d}{{dx}}\left( {g\left( x \right)} \right)} \right)\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Where can free central placentation be seen class 11 biology CBSE

What is the molecular weight of NaOH class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE
