
Differentiate with respect to \[x,\]
\[{\text{ }}y{\text{ }} = {\text{ }}\left( {tan{\text{ }}x{\text{ }} + {\text{ }}sec{\text{ }}x} \right){\text{ }}\left( {cot{\text{ }}x{\text{ }} + {\text{ }}cosec{\text{ }}x} \right)\]
Answer
560.1k+ views
Hint: For this type of trigonometric problem first we simplify by multiplying the right hand side of a given problem and writing the result as in terms of addition or subtraction. As we know that differentiation of individual terms are easier.
Formulas used: Product rule of differentiation$\dfrac{d}{{dx}}(A.B) = A\dfrac{d}{{dx}}(B) + B\dfrac{d}{{dx}}(A)$, $\tan x = \dfrac{{\sin x}}{{\cos x}},\,\,\sec x = \dfrac{1}{{\cos x}},$ $\,\,\tan x.\cot x = 1$
$\,\,\cot x = \dfrac{{\cos x}}{{\sin x}},\,\,\cos ecx = \dfrac{1}{{\sin x}}$
Complete step by step solution:
Given equation is
\[y = \left( {tan{\text{ }}x + sec{\text{ }}x} \right){\text{ }}\left( {cot{\text{ }}x + cosec{\text{ }}x} \right)\]
Simplifying right hand side of above equation we have,
\[y{\text{ }} = {\text{ }}tan{\text{ }}x{\text{ }}.{\text{ }}cot{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x{\text{ }}cosec{\text{ }}x{\text{ }} + {\text{ }}sec{\text{ }}x{\text{ }}.{\text{ }}cot{\text{ }}x{\text{ }} + {\text{ }}sec{\text{ }}x{\text{ }}.{\text{ }}cosec{\text{ }}x\]
For trigonometric functions we have$\tan x.\cot x = 1$, $\sec x = \dfrac{1}{{\cos x}}and\,\,\cos ecx = \dfrac{1}{{\sin x}}$ . Using these in above we have,
\[y = 1 + \dfrac{{\operatorname{sinx} }}{{\cos x\,}} \times \dfrac{1}{{\sin x}} + \dfrac{1}{{\cos x}} \times \dfrac{{\cos x}}{{\sin x}} + \dfrac{1}{{\sin x}} \times \dfrac{1}{{\cos x}}\]
$ \Rightarrow y = 1 + \dfrac{1}{{\cos x}} + \dfrac{1}{{\sin x}} + \dfrac{1}{{\sin x}}.\dfrac{1}{{\cos x}}$
Or
$
y = 1 + \sec x + \cos ecx + \cos ecx.\sec x \\
\Rightarrow y = (1 + \sec x) + \cos ecx(1 + \sec x) \\
\Rightarrow y = (1 + \sec x)(1 + \cos ecx) \\
$
Differentiate above formed equation with respect to x by using product rule.
\[\Rightarrow y = \left( {1 + \cos ec\,x} \right)\,\,\left( {1 + \sec x} \right)\]
$\dfrac{{dy}}{{dx}} = (1 + \sec x)\dfrac{d}{{dx}}(1 + cosecx) + (1 + cosecx)\dfrac{d}{{dx}}(1 + \sec x)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {\because \dfrac{d}{{dx}}\left( {A.B} \right) = A\dfrac{d}{{dx}}(B) + B\dfrac{d}{{dx}}(A)} \right\}$
\[\dfrac{{dy}}{{dx}} = \left( {1 + \sec \,\,x} \right)\left( {cosec\,\,x\,\,\cot \,\,x} \right)\,\, + \left( {1 + \cos ec\,\,x} \right)\,\,\left( {\sec \,\,x\,\,.\,\,\tan \,x} \right)\] $\left\{ {\because \dfrac{d}{{dx}}(\cos ecx) = \cos ecx.\cot x,\,\,\dfrac{d}{{dx}}(\sec x) = \sec x.\tan x} \right\}$
Which is the required derivative of a given function.
Hence, from above we see that derivative of \[{\text{ }}y{\text{ }} = {\text{ }}\left( {tan{\text{ }}x{\text{ }} + {\text{ }}sec{\text{ }}x} \right){\text{ }}\left( {cot{\text{ }}x{\text{ }} + {\text{ }}cosec{\text{ }}x} \right)\] is$\left( {1 + \sec x} \right)\left( {\cos ecx.\cot x} \right) + \left( {1 + \cos ecx} \right)\left( {\sec x.\tan x} \right)$.
So, the correct answer is “Option C”.
Note: In trigonometric functions taking direct derivatives of given terms without changing them to basic t-ratio of trigonometric may lead to different answers as converting given problems in basic trigonometric functions and then differentiating them. But in some cases the answer in both cases will be the same.
Formulas used: Product rule of differentiation$\dfrac{d}{{dx}}(A.B) = A\dfrac{d}{{dx}}(B) + B\dfrac{d}{{dx}}(A)$, $\tan x = \dfrac{{\sin x}}{{\cos x}},\,\,\sec x = \dfrac{1}{{\cos x}},$ $\,\,\tan x.\cot x = 1$
$\,\,\cot x = \dfrac{{\cos x}}{{\sin x}},\,\,\cos ecx = \dfrac{1}{{\sin x}}$
Complete step by step solution:
Given equation is
\[y = \left( {tan{\text{ }}x + sec{\text{ }}x} \right){\text{ }}\left( {cot{\text{ }}x + cosec{\text{ }}x} \right)\]
Simplifying right hand side of above equation we have,
\[y{\text{ }} = {\text{ }}tan{\text{ }}x{\text{ }}.{\text{ }}cot{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x{\text{ }}cosec{\text{ }}x{\text{ }} + {\text{ }}sec{\text{ }}x{\text{ }}.{\text{ }}cot{\text{ }}x{\text{ }} + {\text{ }}sec{\text{ }}x{\text{ }}.{\text{ }}cosec{\text{ }}x\]
For trigonometric functions we have$\tan x.\cot x = 1$, $\sec x = \dfrac{1}{{\cos x}}and\,\,\cos ecx = \dfrac{1}{{\sin x}}$ . Using these in above we have,
\[y = 1 + \dfrac{{\operatorname{sinx} }}{{\cos x\,}} \times \dfrac{1}{{\sin x}} + \dfrac{1}{{\cos x}} \times \dfrac{{\cos x}}{{\sin x}} + \dfrac{1}{{\sin x}} \times \dfrac{1}{{\cos x}}\]
$ \Rightarrow y = 1 + \dfrac{1}{{\cos x}} + \dfrac{1}{{\sin x}} + \dfrac{1}{{\sin x}}.\dfrac{1}{{\cos x}}$
Or
$
y = 1 + \sec x + \cos ecx + \cos ecx.\sec x \\
\Rightarrow y = (1 + \sec x) + \cos ecx(1 + \sec x) \\
\Rightarrow y = (1 + \sec x)(1 + \cos ecx) \\
$
Differentiate above formed equation with respect to x by using product rule.
\[\Rightarrow y = \left( {1 + \cos ec\,x} \right)\,\,\left( {1 + \sec x} \right)\]
$\dfrac{{dy}}{{dx}} = (1 + \sec x)\dfrac{d}{{dx}}(1 + cosecx) + (1 + cosecx)\dfrac{d}{{dx}}(1 + \sec x)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {\because \dfrac{d}{{dx}}\left( {A.B} \right) = A\dfrac{d}{{dx}}(B) + B\dfrac{d}{{dx}}(A)} \right\}$
\[\dfrac{{dy}}{{dx}} = \left( {1 + \sec \,\,x} \right)\left( {cosec\,\,x\,\,\cot \,\,x} \right)\,\, + \left( {1 + \cos ec\,\,x} \right)\,\,\left( {\sec \,\,x\,\,.\,\,\tan \,x} \right)\] $\left\{ {\because \dfrac{d}{{dx}}(\cos ecx) = \cos ecx.\cot x,\,\,\dfrac{d}{{dx}}(\sec x) = \sec x.\tan x} \right\}$
Which is the required derivative of a given function.
Hence, from above we see that derivative of \[{\text{ }}y{\text{ }} = {\text{ }}\left( {tan{\text{ }}x{\text{ }} + {\text{ }}sec{\text{ }}x} \right){\text{ }}\left( {cot{\text{ }}x{\text{ }} + {\text{ }}cosec{\text{ }}x} \right)\] is$\left( {1 + \sec x} \right)\left( {\cos ecx.\cot x} \right) + \left( {1 + \cos ecx} \right)\left( {\sec x.\tan x} \right)$.
So, the correct answer is “Option C”.
Note: In trigonometric functions taking direct derivatives of given terms without changing them to basic t-ratio of trigonometric may lead to different answers as converting given problems in basic trigonometric functions and then differentiating them. But in some cases the answer in both cases will be the same.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

