
Differentiate with respect to \[x,\]
\[{\text{ }}y{\text{ }} = {\text{ }}\left( {tan{\text{ }}x{\text{ }} + {\text{ }}sec{\text{ }}x} \right){\text{ }}\left( {cot{\text{ }}x{\text{ }} + {\text{ }}cosec{\text{ }}x} \right)\]
Answer
574.5k+ views
Hint: For this type of trigonometric problem first we simplify by multiplying the right hand side of a given problem and writing the result as in terms of addition or subtraction. As we know that differentiation of individual terms are easier.
Formulas used: Product rule of differentiation$\dfrac{d}{{dx}}(A.B) = A\dfrac{d}{{dx}}(B) + B\dfrac{d}{{dx}}(A)$, $\tan x = \dfrac{{\sin x}}{{\cos x}},\,\,\sec x = \dfrac{1}{{\cos x}},$ $\,\,\tan x.\cot x = 1$
$\,\,\cot x = \dfrac{{\cos x}}{{\sin x}},\,\,\cos ecx = \dfrac{1}{{\sin x}}$
Complete step by step solution:
Given equation is
\[y = \left( {tan{\text{ }}x + sec{\text{ }}x} \right){\text{ }}\left( {cot{\text{ }}x + cosec{\text{ }}x} \right)\]
Simplifying right hand side of above equation we have,
\[y{\text{ }} = {\text{ }}tan{\text{ }}x{\text{ }}.{\text{ }}cot{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x{\text{ }}cosec{\text{ }}x{\text{ }} + {\text{ }}sec{\text{ }}x{\text{ }}.{\text{ }}cot{\text{ }}x{\text{ }} + {\text{ }}sec{\text{ }}x{\text{ }}.{\text{ }}cosec{\text{ }}x\]
For trigonometric functions we have$\tan x.\cot x = 1$, $\sec x = \dfrac{1}{{\cos x}}and\,\,\cos ecx = \dfrac{1}{{\sin x}}$ . Using these in above we have,
\[y = 1 + \dfrac{{\operatorname{sinx} }}{{\cos x\,}} \times \dfrac{1}{{\sin x}} + \dfrac{1}{{\cos x}} \times \dfrac{{\cos x}}{{\sin x}} + \dfrac{1}{{\sin x}} \times \dfrac{1}{{\cos x}}\]
$ \Rightarrow y = 1 + \dfrac{1}{{\cos x}} + \dfrac{1}{{\sin x}} + \dfrac{1}{{\sin x}}.\dfrac{1}{{\cos x}}$
Or
$
y = 1 + \sec x + \cos ecx + \cos ecx.\sec x \\
\Rightarrow y = (1 + \sec x) + \cos ecx(1 + \sec x) \\
\Rightarrow y = (1 + \sec x)(1 + \cos ecx) \\
$
Differentiate above formed equation with respect to x by using product rule.
\[\Rightarrow y = \left( {1 + \cos ec\,x} \right)\,\,\left( {1 + \sec x} \right)\]
$\dfrac{{dy}}{{dx}} = (1 + \sec x)\dfrac{d}{{dx}}(1 + cosecx) + (1 + cosecx)\dfrac{d}{{dx}}(1 + \sec x)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {\because \dfrac{d}{{dx}}\left( {A.B} \right) = A\dfrac{d}{{dx}}(B) + B\dfrac{d}{{dx}}(A)} \right\}$
\[\dfrac{{dy}}{{dx}} = \left( {1 + \sec \,\,x} \right)\left( {cosec\,\,x\,\,\cot \,\,x} \right)\,\, + \left( {1 + \cos ec\,\,x} \right)\,\,\left( {\sec \,\,x\,\,.\,\,\tan \,x} \right)\] $\left\{ {\because \dfrac{d}{{dx}}(\cos ecx) = \cos ecx.\cot x,\,\,\dfrac{d}{{dx}}(\sec x) = \sec x.\tan x} \right\}$
Which is the required derivative of a given function.
Hence, from above we see that derivative of \[{\text{ }}y{\text{ }} = {\text{ }}\left( {tan{\text{ }}x{\text{ }} + {\text{ }}sec{\text{ }}x} \right){\text{ }}\left( {cot{\text{ }}x{\text{ }} + {\text{ }}cosec{\text{ }}x} \right)\] is$\left( {1 + \sec x} \right)\left( {\cos ecx.\cot x} \right) + \left( {1 + \cos ecx} \right)\left( {\sec x.\tan x} \right)$.
So, the correct answer is “Option C”.
Note: In trigonometric functions taking direct derivatives of given terms without changing them to basic t-ratio of trigonometric may lead to different answers as converting given problems in basic trigonometric functions and then differentiating them. But in some cases the answer in both cases will be the same.
Formulas used: Product rule of differentiation$\dfrac{d}{{dx}}(A.B) = A\dfrac{d}{{dx}}(B) + B\dfrac{d}{{dx}}(A)$, $\tan x = \dfrac{{\sin x}}{{\cos x}},\,\,\sec x = \dfrac{1}{{\cos x}},$ $\,\,\tan x.\cot x = 1$
$\,\,\cot x = \dfrac{{\cos x}}{{\sin x}},\,\,\cos ecx = \dfrac{1}{{\sin x}}$
Complete step by step solution:
Given equation is
\[y = \left( {tan{\text{ }}x + sec{\text{ }}x} \right){\text{ }}\left( {cot{\text{ }}x + cosec{\text{ }}x} \right)\]
Simplifying right hand side of above equation we have,
\[y{\text{ }} = {\text{ }}tan{\text{ }}x{\text{ }}.{\text{ }}cot{\text{ }}x{\text{ }} + {\text{ }}tan{\text{ }}x{\text{ }}cosec{\text{ }}x{\text{ }} + {\text{ }}sec{\text{ }}x{\text{ }}.{\text{ }}cot{\text{ }}x{\text{ }} + {\text{ }}sec{\text{ }}x{\text{ }}.{\text{ }}cosec{\text{ }}x\]
For trigonometric functions we have$\tan x.\cot x = 1$, $\sec x = \dfrac{1}{{\cos x}}and\,\,\cos ecx = \dfrac{1}{{\sin x}}$ . Using these in above we have,
\[y = 1 + \dfrac{{\operatorname{sinx} }}{{\cos x\,}} \times \dfrac{1}{{\sin x}} + \dfrac{1}{{\cos x}} \times \dfrac{{\cos x}}{{\sin x}} + \dfrac{1}{{\sin x}} \times \dfrac{1}{{\cos x}}\]
$ \Rightarrow y = 1 + \dfrac{1}{{\cos x}} + \dfrac{1}{{\sin x}} + \dfrac{1}{{\sin x}}.\dfrac{1}{{\cos x}}$
Or
$
y = 1 + \sec x + \cos ecx + \cos ecx.\sec x \\
\Rightarrow y = (1 + \sec x) + \cos ecx(1 + \sec x) \\
\Rightarrow y = (1 + \sec x)(1 + \cos ecx) \\
$
Differentiate above formed equation with respect to x by using product rule.
\[\Rightarrow y = \left( {1 + \cos ec\,x} \right)\,\,\left( {1 + \sec x} \right)\]
$\dfrac{{dy}}{{dx}} = (1 + \sec x)\dfrac{d}{{dx}}(1 + cosecx) + (1 + cosecx)\dfrac{d}{{dx}}(1 + \sec x)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {\because \dfrac{d}{{dx}}\left( {A.B} \right) = A\dfrac{d}{{dx}}(B) + B\dfrac{d}{{dx}}(A)} \right\}$
\[\dfrac{{dy}}{{dx}} = \left( {1 + \sec \,\,x} \right)\left( {cosec\,\,x\,\,\cot \,\,x} \right)\,\, + \left( {1 + \cos ec\,\,x} \right)\,\,\left( {\sec \,\,x\,\,.\,\,\tan \,x} \right)\] $\left\{ {\because \dfrac{d}{{dx}}(\cos ecx) = \cos ecx.\cot x,\,\,\dfrac{d}{{dx}}(\sec x) = \sec x.\tan x} \right\}$
Which is the required derivative of a given function.
Hence, from above we see that derivative of \[{\text{ }}y{\text{ }} = {\text{ }}\left( {tan{\text{ }}x{\text{ }} + {\text{ }}sec{\text{ }}x} \right){\text{ }}\left( {cot{\text{ }}x{\text{ }} + {\text{ }}cosec{\text{ }}x} \right)\] is$\left( {1 + \sec x} \right)\left( {\cos ecx.\cot x} \right) + \left( {1 + \cos ecx} \right)\left( {\sec x.\tan x} \right)$.
So, the correct answer is “Option C”.
Note: In trigonometric functions taking direct derivatives of given terms without changing them to basic t-ratio of trigonometric may lead to different answers as converting given problems in basic trigonometric functions and then differentiating them. But in some cases the answer in both cases will be the same.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

