
Differentiate the given function with respect to $x$: ${x^{{x^2} - 3}} + {\left( {x - 3} \right)^{{x^2}}}$ , for $x > 3$
Answer
594.9k+ views
Hint: The given equation ${x^{{x^2} - 3}} + {\left( {x - 3} \right)^{{x^2}}}$ can be divided as sum of two separate functions ${x^{{x^2} - 3}}$ and ${\left( {x - 3} \right)^{{x^2}}}$. The differentiation of these terms can be calculated separately. The differentiation is done by taking \[\log \] on both sides of the equation. The result for the two functions can be then added to form the solution.
Complete step-by-step answer:
Let the given function in the question ${x^{{x^2} - 3}} + {\left( {x - 3} \right)^{{x^2}}}$ be represented by $y$ . The given function can be written as sum of two functions ${x^{{x^2} - 3}}$ and ${\left( {x - 3} \right)^{{x^2}}}$.
Let the function ${x^{{x^2} - 3}}$ be represented by $p$, and the function ${\left( {x - 3} \right)^{{x^2}}}$ represented by $r$ .
Thus the given function $y$ is sum of \[p\] and \[r\].
The differentiation of \[p\] with respect to $x$can be evaluated after taking $\log $ on both sides of the equation $p = {x^{{x^2} - 3}}$.
\[\log p = \log \left( {{x^{{x^2} - 3}}} \right)\]
On simplifying the above equation using the property $\log \left( {{a^b}} \right) = b\log a$, we get
$\log p = \left( {{x^2} - 3} \right)\log x$
Differentiating both sides with respect to $x$ to solve for $\dfrac{{dp}}{{dx}}$, we get
$
\dfrac{{d\log p}}{{dx}} = \dfrac{{d\left( {\left( {{x^2} - 3} \right)\log x} \right)}}{{dx}} \\
\Rightarrow \dfrac{1}{p}\dfrac{{dp}}{{dx}} = \left( {{x^2} - 3} \right)\dfrac{{d\left( {\log x} \right)}}{{dx}} + \log x\dfrac{{d\left( {{x^2} - 3} \right)}}{{dx}} \\
\Rightarrow \dfrac{1}{p}\dfrac{{dp}}{{dx}} = {x^2} - 3\left( {\dfrac{1}{x}} \right) + \log x\left( {2x} \right) \\
\Rightarrow \dfrac{1}{p}\dfrac{{dp}}{{dx}} = \dfrac{{{x^2} - 3}}{x} + 2x\log x \\
\Rightarrow \dfrac{{dp}}{{dx}} = p\left( {\dfrac{{{x^2} - 3}}{x} + 2x\log x} \right) \\
$
Substituting the value $p = {x^{{x^2} - 3}}$ in the above equation, we get
$\dfrac{{dp}}{{dx}} = {x^{{x^2} - 3}}\left( {\dfrac{{{x^2} - 3}}{x} + 2x\log x} \right)$
Similarly, taking $\log $ and solving for \[\dfrac{{dr}}{{dx}}\] in the equation $r = {\left( {x - 3} \right)^{{x^2}}}$, we get
$
\log r = \log \left( {{{\left( {x - 3} \right)}^{{x^2}}}} \right) \\
\Rightarrow \log r = {x^2}\log \left( {x - 3} \right) \\
\Rightarrow \dfrac{{d\log r}}{{dx}} = \dfrac{{d\left( {{x^2}\log \left( {x - 3} \right)} \right)}}{{dx}} \\
\Rightarrow \dfrac{1}{r}\dfrac{{dr}}{{dx}} = {x^2}\dfrac{{d\left( {\log \left( {x - 3} \right)} \right)}}{{dx}} + \log \left( {x - 3} \right)\dfrac{{d{x^2}}}{{dx}} \\
\Rightarrow \dfrac{1}{r}\dfrac{{dr}}{{dx}} = {x^2}\left( {\dfrac{1}{{x - 3}}} \right) + 2x\log \left( {x - 3} \right) \\
\Rightarrow \dfrac{{dr}}{{dx}} = r\left( {{x^2}\left( {\dfrac{1}{{x - 3}}} \right) + 2x\log \left( {x - 3} \right)} \right) \\
\Rightarrow \dfrac{{dr}}{{dx}} = {\left( {x - 3} \right)^{{x^2}}}\left( {\dfrac{{{x^2}}}{{x - 3}} + 2x\log \left( {x - 3} \right)} \right) \\
$
For the known equation $y = p + r$, differentiating the equation w.r.t. $x$, we get
\[\dfrac{{dy}}{{dx}} = \dfrac{{dp}}{{dx}} + \dfrac{{dr}}{{dx}}\]
Substituting the value for the \[\dfrac{{dp}}{{dx}}\] and \[\dfrac{{dr}}{{dx}}\] in the equation \[\dfrac{{dy}}{{dx}} = \dfrac{{dp}}{{dx}} + \dfrac{{dr}}{{dx}}\], we get
\[\dfrac{{dy}}{{dx}} = {x^{{x^2} - 3}}\left( {\dfrac{{{x^2} - 3}}{x} + 2x\log x} \right) + {\left( {x - 3} \right)^{{x^2}}}\left( {\dfrac{{{x^2}}}{{x - 3}} + 2x\log \left( {x - 3} \right)} \right)\]
The differentiation of ${x^{{x^2} - 3}} + {\left( {x - 3} \right)^{{x^2}}}$ with respect to $x$ is \[{x^{{x^2} - 3}}\left( {\dfrac{{{x^2} - 3}}{x} + 2x\log x} \right) + {\left( {x - 3} \right)^{{x^2}}}\left( {\dfrac{{{x^2}}}{{x - 3}} + 2x\log \left( {x - 3} \right)} \right)\]
Note: The calculation must be carried out separately for the two functions to avoid complexity. Taking \[\log \] on both sides of the equation of $p$ and $r$ to find its derivative quickly. The differentiation can also be done by using the known formula $\dfrac{{d{f^g}}}{{dx}} = {\left( f \right)^g}\dfrac{{d\left( {\ln (f).g} \right)}}{{dx}}$, where $f$ and $g$ are both function of $x$.
Complete step-by-step answer:
Let the given function in the question ${x^{{x^2} - 3}} + {\left( {x - 3} \right)^{{x^2}}}$ be represented by $y$ . The given function can be written as sum of two functions ${x^{{x^2} - 3}}$ and ${\left( {x - 3} \right)^{{x^2}}}$.
Let the function ${x^{{x^2} - 3}}$ be represented by $p$, and the function ${\left( {x - 3} \right)^{{x^2}}}$ represented by $r$ .
Thus the given function $y$ is sum of \[p\] and \[r\].
The differentiation of \[p\] with respect to $x$can be evaluated after taking $\log $ on both sides of the equation $p = {x^{{x^2} - 3}}$.
\[\log p = \log \left( {{x^{{x^2} - 3}}} \right)\]
On simplifying the above equation using the property $\log \left( {{a^b}} \right) = b\log a$, we get
$\log p = \left( {{x^2} - 3} \right)\log x$
Differentiating both sides with respect to $x$ to solve for $\dfrac{{dp}}{{dx}}$, we get
$
\dfrac{{d\log p}}{{dx}} = \dfrac{{d\left( {\left( {{x^2} - 3} \right)\log x} \right)}}{{dx}} \\
\Rightarrow \dfrac{1}{p}\dfrac{{dp}}{{dx}} = \left( {{x^2} - 3} \right)\dfrac{{d\left( {\log x} \right)}}{{dx}} + \log x\dfrac{{d\left( {{x^2} - 3} \right)}}{{dx}} \\
\Rightarrow \dfrac{1}{p}\dfrac{{dp}}{{dx}} = {x^2} - 3\left( {\dfrac{1}{x}} \right) + \log x\left( {2x} \right) \\
\Rightarrow \dfrac{1}{p}\dfrac{{dp}}{{dx}} = \dfrac{{{x^2} - 3}}{x} + 2x\log x \\
\Rightarrow \dfrac{{dp}}{{dx}} = p\left( {\dfrac{{{x^2} - 3}}{x} + 2x\log x} \right) \\
$
Substituting the value $p = {x^{{x^2} - 3}}$ in the above equation, we get
$\dfrac{{dp}}{{dx}} = {x^{{x^2} - 3}}\left( {\dfrac{{{x^2} - 3}}{x} + 2x\log x} \right)$
Similarly, taking $\log $ and solving for \[\dfrac{{dr}}{{dx}}\] in the equation $r = {\left( {x - 3} \right)^{{x^2}}}$, we get
$
\log r = \log \left( {{{\left( {x - 3} \right)}^{{x^2}}}} \right) \\
\Rightarrow \log r = {x^2}\log \left( {x - 3} \right) \\
\Rightarrow \dfrac{{d\log r}}{{dx}} = \dfrac{{d\left( {{x^2}\log \left( {x - 3} \right)} \right)}}{{dx}} \\
\Rightarrow \dfrac{1}{r}\dfrac{{dr}}{{dx}} = {x^2}\dfrac{{d\left( {\log \left( {x - 3} \right)} \right)}}{{dx}} + \log \left( {x - 3} \right)\dfrac{{d{x^2}}}{{dx}} \\
\Rightarrow \dfrac{1}{r}\dfrac{{dr}}{{dx}} = {x^2}\left( {\dfrac{1}{{x - 3}}} \right) + 2x\log \left( {x - 3} \right) \\
\Rightarrow \dfrac{{dr}}{{dx}} = r\left( {{x^2}\left( {\dfrac{1}{{x - 3}}} \right) + 2x\log \left( {x - 3} \right)} \right) \\
\Rightarrow \dfrac{{dr}}{{dx}} = {\left( {x - 3} \right)^{{x^2}}}\left( {\dfrac{{{x^2}}}{{x - 3}} + 2x\log \left( {x - 3} \right)} \right) \\
$
For the known equation $y = p + r$, differentiating the equation w.r.t. $x$, we get
\[\dfrac{{dy}}{{dx}} = \dfrac{{dp}}{{dx}} + \dfrac{{dr}}{{dx}}\]
Substituting the value for the \[\dfrac{{dp}}{{dx}}\] and \[\dfrac{{dr}}{{dx}}\] in the equation \[\dfrac{{dy}}{{dx}} = \dfrac{{dp}}{{dx}} + \dfrac{{dr}}{{dx}}\], we get
\[\dfrac{{dy}}{{dx}} = {x^{{x^2} - 3}}\left( {\dfrac{{{x^2} - 3}}{x} + 2x\log x} \right) + {\left( {x - 3} \right)^{{x^2}}}\left( {\dfrac{{{x^2}}}{{x - 3}} + 2x\log \left( {x - 3} \right)} \right)\]
The differentiation of ${x^{{x^2} - 3}} + {\left( {x - 3} \right)^{{x^2}}}$ with respect to $x$ is \[{x^{{x^2} - 3}}\left( {\dfrac{{{x^2} - 3}}{x} + 2x\log x} \right) + {\left( {x - 3} \right)^{{x^2}}}\left( {\dfrac{{{x^2}}}{{x - 3}} + 2x\log \left( {x - 3} \right)} \right)\]
Note: The calculation must be carried out separately for the two functions to avoid complexity. Taking \[\log \] on both sides of the equation of $p$ and $r$ to find its derivative quickly. The differentiation can also be done by using the known formula $\dfrac{{d{f^g}}}{{dx}} = {\left( f \right)^g}\dfrac{{d\left( {\ln (f).g} \right)}}{{dx}}$, where $f$ and $g$ are both function of $x$.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

