
Differentiate the given function with respect to x.
\[{{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}}\]
Answer
613.5k+ views
Hint: As the expression contains multiplication of few algebraic expressions, use logarithm to separate them and then differentiate them separately.
Complete step-by-step answer:
Let us assume the function to be y.
So by assuming, we get:
\[y={{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}}\] …..(1)
By taking log on both sides, we get:
\[\log y=\log \left\{ {{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}} \right\}\]
By applying logarithm property,
log(a.b)=log(a)+log(b) …..(2),we get:
\[\log y=\log \left\{ {{\left( x+3 \right)}^{2}} \right\}+\log \left\{ {{\left( x+4 \right)}^{3}} \right\}+\log \left\{ {{\left( x+5 \right)}^{4}} \right\}\]
By applying logarithm property,
\[\log \left( {{a}^{b}} \right)=b\log \left( a \right)\] …..(3), we get:
\[\log y=2\log \left\{ \left( x+3 \right) \right\}+3\log \left\{ \left( x+4 \right) \right\}+4\log \left\{ \left( x+5 \right) \right\}\]
By differentiating both sides w.r.t. x, we get:
\[\dfrac{d\left( \log y \right)}{dx}=\dfrac{d\left( 2\log \left( x+3 \right)+3\log \left( x+4 \right)+4\log \left( x+5 \right) \right)}{dx}\]
By applying differentiation properties,
\[\dfrac{d(a+b)}{dx}=\dfrac{da}{dx}+\dfrac{db}{dx}\] , we get:
\[\dfrac{d\left( \log y \right)}{dx}=\dfrac{d\left( 2\log \left( x+3 \right) \right)}{dx}+\dfrac{d\left( 3\log \left( x+4 \right) \right)}{dx}+\dfrac{d\left( 4\log \left( x+5 \right) \right)}{dx}\]
By applying differentiation properties,
\[\dfrac{d\left( k\times f\left( x \right) \right)}{dx}=k\times \dfrac{d\left( f\left( x \right) \right)}{dx}\]
In the above equation, f(x) is a function of x and k is a constant.
By above, we get:
\[\dfrac{d\left( \log y \right)}{dx}=2\dfrac{d\left( \log \left( x+3 \right) \right)}{dx}+3\dfrac{d\left( \log \left( x+4 \right) \right)}{dx}+4\dfrac{d\left( \log \left( x+5 \right) \right)}{dx}\]
By applying differentiation properties,
\[\dfrac{d\left( \log\left (f\left( x \right)\right) \right)}{dx}=\dfrac{1}{f\left( x \right)}\times \dfrac{d\left( f\left( x \right) \right)}{dx}\]
In the above equation, f(x) is a function of x.
By above, we get:
\[\dfrac{1}{y}\dfrac{d\left( y \right)}{dx}=2\dfrac{1}{\left( x+3 \right)}\dfrac{d\left( x+3\right)}{dx}+3\dfrac{1}{\left( x+4 \right)}\dfrac{d\left( x+4 \right)}{dx}+4\dfrac{1}{\left( x+5 \right)}\dfrac{d\left( x+5 \right)}{dx}\]
By using equation (2), we get:
\[\dfrac{1}{y}\dfrac{d\left( y \right)}{dx}=2\dfrac{1}{\left( x+3 \right)}\left( \dfrac{dx}{dx}+\dfrac{d\left( 3 \right)}{dx} \right)+3\dfrac{1}{\left( x+4 \right)}\left( \dfrac{dx}{dx}+\dfrac{d\left( 4 \right)}{dx} \right)+4\dfrac{1}{\left( x+5 \right)}\left( \dfrac{dx}{dx}+\dfrac{d\left( 5 \right)}{dx} \right)\]
We know differentiation of a constant with respect to x is 0 and differentiation of x with respect to x is 1.
By using these, we get:
\[\begin{align}
& \dfrac{1}{y}\dfrac{d\left( y \right)}{dx}=2\dfrac{1}{\left( x+3 \right)}\left( 1+0 \right)+3\dfrac{1}{\left( x+4 \right)}\left( 1+0 \right)+4\dfrac{1}{\left( x+5 \right)}\left( 1+0 \right) \\
& \dfrac{1}{y}\dfrac{d\left( y \right)}{dx}=\dfrac{2}{\left( x+3 \right)}+\dfrac{3}{\left( x+4 \right)}+\dfrac{4}{\left( x+5 \right)} \\
\end{align}\]
So by multiplying y on both sides, we get:
\[\dfrac{d\left( y \right)}{dx}=y\left( \dfrac{2}{\left( x+3 \right)}+\dfrac{3}{\left( x+4 \right)}+\dfrac{4}{\left( x+5 \right)} \right)\]
By substituting the value of y,
we get:
\[\dfrac{dy}{dx}=\left( {{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}} \right)\left( \dfrac{2}{\left( x+3 \right)}+\dfrac{3}{\left( x+4 \right)}+\dfrac{4}{\left( x+5 \right)} \right)\]
By simplifying, we get:
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{{{\left( x+3 \right)}^{2}}{{\left( x+4 \right)}^{3}}{{\left( x+5 \right)}^{4}}}{\left( x+3 \right)\left( x+4 \right)\left( x+5 \right)}\left( 2\left( {{x}^{2}}+4x+5x+20 \right)+3\left( {{x}^{2}}+3x+5x+15 \right)+4\left( {{x}^{2}}+3x+4x+12 \right) \right) \\
& \dfrac{dy}{dx}=\dfrac{\left( x+3 \right){{\left( x+4 \right)}^{2}}{{\left( x+5 \right)}^{3}}}{1}\left( 2\left( {{x}^{2}}+9x+20 \right)+3\left( {{x}^{2}}+8x+15 \right)+4\left( {{x}^{2}}+7x+12 \right) \right) \\
& \\
\end{align}\]By solving more and cancelling terms, we get:
\[\begin{align}
& \dfrac{dy}{dx}=\left( x+3 \right){{\left( x+4 \right)}^{2}}{{\left( x+5 \right)}^{3}}\left( \left( 2{{x}^{2}}+18x+40 \right)+\left( 3{{x}^{2}}+24x+45 \right)+\left( 4{{x}^{2}}+28x+48 \right) \right) \\
& \dfrac{dy}{dx}=\left( x+3 \right){{\left( x+4 \right)}^{2}}{{\left( x+5 \right)}^{3}}\left( 9{{x}^{2}}+70x+133 \right) \\
\end{align}\]
So the differentiation of given function is as follows:
\[\dfrac{d\left( {{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}} \right)}{dx}=\left( x+3 \right){{\left( x+4 \right)}^{2}}{{\left( x+5 \right)}^{3}}\left( 9{{x}^{2}}+70x+133 \right)\]
Note: Now let’s write two equations,observe carefully and don’t get confused in these aspects.
\[\begin{align}
& \log \left( a\times b \right)=\log a+\log b\text{ ,but} \\
& \dfrac{d\left( a\times b \right)}{dx}\ne \dfrac{da}{dx}+\dfrac{db}{dx} \\
\end{align}\]
So whenever you see multiplication. First apply logarithm and then differentiate.
Complete step-by-step answer:
Let us assume the function to be y.
So by assuming, we get:
\[y={{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}}\] …..(1)
By taking log on both sides, we get:
\[\log y=\log \left\{ {{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}} \right\}\]
By applying logarithm property,
log(a.b)=log(a)+log(b) …..(2),we get:
\[\log y=\log \left\{ {{\left( x+3 \right)}^{2}} \right\}+\log \left\{ {{\left( x+4 \right)}^{3}} \right\}+\log \left\{ {{\left( x+5 \right)}^{4}} \right\}\]
By applying logarithm property,
\[\log \left( {{a}^{b}} \right)=b\log \left( a \right)\] …..(3), we get:
\[\log y=2\log \left\{ \left( x+3 \right) \right\}+3\log \left\{ \left( x+4 \right) \right\}+4\log \left\{ \left( x+5 \right) \right\}\]
By differentiating both sides w.r.t. x, we get:
\[\dfrac{d\left( \log y \right)}{dx}=\dfrac{d\left( 2\log \left( x+3 \right)+3\log \left( x+4 \right)+4\log \left( x+5 \right) \right)}{dx}\]
By applying differentiation properties,
\[\dfrac{d(a+b)}{dx}=\dfrac{da}{dx}+\dfrac{db}{dx}\] , we get:
\[\dfrac{d\left( \log y \right)}{dx}=\dfrac{d\left( 2\log \left( x+3 \right) \right)}{dx}+\dfrac{d\left( 3\log \left( x+4 \right) \right)}{dx}+\dfrac{d\left( 4\log \left( x+5 \right) \right)}{dx}\]
By applying differentiation properties,
\[\dfrac{d\left( k\times f\left( x \right) \right)}{dx}=k\times \dfrac{d\left( f\left( x \right) \right)}{dx}\]
In the above equation, f(x) is a function of x and k is a constant.
By above, we get:
\[\dfrac{d\left( \log y \right)}{dx}=2\dfrac{d\left( \log \left( x+3 \right) \right)}{dx}+3\dfrac{d\left( \log \left( x+4 \right) \right)}{dx}+4\dfrac{d\left( \log \left( x+5 \right) \right)}{dx}\]
By applying differentiation properties,
\[\dfrac{d\left( \log\left (f\left( x \right)\right) \right)}{dx}=\dfrac{1}{f\left( x \right)}\times \dfrac{d\left( f\left( x \right) \right)}{dx}\]
In the above equation, f(x) is a function of x.
By above, we get:
\[\dfrac{1}{y}\dfrac{d\left( y \right)}{dx}=2\dfrac{1}{\left( x+3 \right)}\dfrac{d\left( x+3\right)}{dx}+3\dfrac{1}{\left( x+4 \right)}\dfrac{d\left( x+4 \right)}{dx}+4\dfrac{1}{\left( x+5 \right)}\dfrac{d\left( x+5 \right)}{dx}\]
By using equation (2), we get:
\[\dfrac{1}{y}\dfrac{d\left( y \right)}{dx}=2\dfrac{1}{\left( x+3 \right)}\left( \dfrac{dx}{dx}+\dfrac{d\left( 3 \right)}{dx} \right)+3\dfrac{1}{\left( x+4 \right)}\left( \dfrac{dx}{dx}+\dfrac{d\left( 4 \right)}{dx} \right)+4\dfrac{1}{\left( x+5 \right)}\left( \dfrac{dx}{dx}+\dfrac{d\left( 5 \right)}{dx} \right)\]
We know differentiation of a constant with respect to x is 0 and differentiation of x with respect to x is 1.
By using these, we get:
\[\begin{align}
& \dfrac{1}{y}\dfrac{d\left( y \right)}{dx}=2\dfrac{1}{\left( x+3 \right)}\left( 1+0 \right)+3\dfrac{1}{\left( x+4 \right)}\left( 1+0 \right)+4\dfrac{1}{\left( x+5 \right)}\left( 1+0 \right) \\
& \dfrac{1}{y}\dfrac{d\left( y \right)}{dx}=\dfrac{2}{\left( x+3 \right)}+\dfrac{3}{\left( x+4 \right)}+\dfrac{4}{\left( x+5 \right)} \\
\end{align}\]
So by multiplying y on both sides, we get:
\[\dfrac{d\left( y \right)}{dx}=y\left( \dfrac{2}{\left( x+3 \right)}+\dfrac{3}{\left( x+4 \right)}+\dfrac{4}{\left( x+5 \right)} \right)\]
By substituting the value of y,
we get:
\[\dfrac{dy}{dx}=\left( {{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}} \right)\left( \dfrac{2}{\left( x+3 \right)}+\dfrac{3}{\left( x+4 \right)}+\dfrac{4}{\left( x+5 \right)} \right)\]
By simplifying, we get:
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{{{\left( x+3 \right)}^{2}}{{\left( x+4 \right)}^{3}}{{\left( x+5 \right)}^{4}}}{\left( x+3 \right)\left( x+4 \right)\left( x+5 \right)}\left( 2\left( {{x}^{2}}+4x+5x+20 \right)+3\left( {{x}^{2}}+3x+5x+15 \right)+4\left( {{x}^{2}}+3x+4x+12 \right) \right) \\
& \dfrac{dy}{dx}=\dfrac{\left( x+3 \right){{\left( x+4 \right)}^{2}}{{\left( x+5 \right)}^{3}}}{1}\left( 2\left( {{x}^{2}}+9x+20 \right)+3\left( {{x}^{2}}+8x+15 \right)+4\left( {{x}^{2}}+7x+12 \right) \right) \\
& \\
\end{align}\]By solving more and cancelling terms, we get:
\[\begin{align}
& \dfrac{dy}{dx}=\left( x+3 \right){{\left( x+4 \right)}^{2}}{{\left( x+5 \right)}^{3}}\left( \left( 2{{x}^{2}}+18x+40 \right)+\left( 3{{x}^{2}}+24x+45 \right)+\left( 4{{x}^{2}}+28x+48 \right) \right) \\
& \dfrac{dy}{dx}=\left( x+3 \right){{\left( x+4 \right)}^{2}}{{\left( x+5 \right)}^{3}}\left( 9{{x}^{2}}+70x+133 \right) \\
\end{align}\]
So the differentiation of given function is as follows:
\[\dfrac{d\left( {{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}} \right)}{dx}=\left( x+3 \right){{\left( x+4 \right)}^{2}}{{\left( x+5 \right)}^{3}}\left( 9{{x}^{2}}+70x+133 \right)\]
Note: Now let’s write two equations,observe carefully and don’t get confused in these aspects.
\[\begin{align}
& \log \left( a\times b \right)=\log a+\log b\text{ ,but} \\
& \dfrac{d\left( a\times b \right)}{dx}\ne \dfrac{da}{dx}+\dfrac{db}{dx} \\
\end{align}\]
So whenever you see multiplication. First apply logarithm and then differentiate.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

10 examples of friction in our daily life

