
Differentiate the given function with respect to x.
\[{{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}}\]
Answer
594.9k+ views
Hint: As the expression contains multiplication of few algebraic expressions, use logarithm to separate them and then differentiate them separately.
Complete step-by-step answer:
Let us assume the function to be y.
So by assuming, we get:
\[y={{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}}\] …..(1)
By taking log on both sides, we get:
\[\log y=\log \left\{ {{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}} \right\}\]
By applying logarithm property,
log(a.b)=log(a)+log(b) …..(2),we get:
\[\log y=\log \left\{ {{\left( x+3 \right)}^{2}} \right\}+\log \left\{ {{\left( x+4 \right)}^{3}} \right\}+\log \left\{ {{\left( x+5 \right)}^{4}} \right\}\]
By applying logarithm property,
\[\log \left( {{a}^{b}} \right)=b\log \left( a \right)\] …..(3), we get:
\[\log y=2\log \left\{ \left( x+3 \right) \right\}+3\log \left\{ \left( x+4 \right) \right\}+4\log \left\{ \left( x+5 \right) \right\}\]
By differentiating both sides w.r.t. x, we get:
\[\dfrac{d\left( \log y \right)}{dx}=\dfrac{d\left( 2\log \left( x+3 \right)+3\log \left( x+4 \right)+4\log \left( x+5 \right) \right)}{dx}\]
By applying differentiation properties,
\[\dfrac{d(a+b)}{dx}=\dfrac{da}{dx}+\dfrac{db}{dx}\] , we get:
\[\dfrac{d\left( \log y \right)}{dx}=\dfrac{d\left( 2\log \left( x+3 \right) \right)}{dx}+\dfrac{d\left( 3\log \left( x+4 \right) \right)}{dx}+\dfrac{d\left( 4\log \left( x+5 \right) \right)}{dx}\]
By applying differentiation properties,
\[\dfrac{d\left( k\times f\left( x \right) \right)}{dx}=k\times \dfrac{d\left( f\left( x \right) \right)}{dx}\]
In the above equation, f(x) is a function of x and k is a constant.
By above, we get:
\[\dfrac{d\left( \log y \right)}{dx}=2\dfrac{d\left( \log \left( x+3 \right) \right)}{dx}+3\dfrac{d\left( \log \left( x+4 \right) \right)}{dx}+4\dfrac{d\left( \log \left( x+5 \right) \right)}{dx}\]
By applying differentiation properties,
\[\dfrac{d\left( \log\left (f\left( x \right)\right) \right)}{dx}=\dfrac{1}{f\left( x \right)}\times \dfrac{d\left( f\left( x \right) \right)}{dx}\]
In the above equation, f(x) is a function of x.
By above, we get:
\[\dfrac{1}{y}\dfrac{d\left( y \right)}{dx}=2\dfrac{1}{\left( x+3 \right)}\dfrac{d\left( x+3\right)}{dx}+3\dfrac{1}{\left( x+4 \right)}\dfrac{d\left( x+4 \right)}{dx}+4\dfrac{1}{\left( x+5 \right)}\dfrac{d\left( x+5 \right)}{dx}\]
By using equation (2), we get:
\[\dfrac{1}{y}\dfrac{d\left( y \right)}{dx}=2\dfrac{1}{\left( x+3 \right)}\left( \dfrac{dx}{dx}+\dfrac{d\left( 3 \right)}{dx} \right)+3\dfrac{1}{\left( x+4 \right)}\left( \dfrac{dx}{dx}+\dfrac{d\left( 4 \right)}{dx} \right)+4\dfrac{1}{\left( x+5 \right)}\left( \dfrac{dx}{dx}+\dfrac{d\left( 5 \right)}{dx} \right)\]
We know differentiation of a constant with respect to x is 0 and differentiation of x with respect to x is 1.
By using these, we get:
\[\begin{align}
& \dfrac{1}{y}\dfrac{d\left( y \right)}{dx}=2\dfrac{1}{\left( x+3 \right)}\left( 1+0 \right)+3\dfrac{1}{\left( x+4 \right)}\left( 1+0 \right)+4\dfrac{1}{\left( x+5 \right)}\left( 1+0 \right) \\
& \dfrac{1}{y}\dfrac{d\left( y \right)}{dx}=\dfrac{2}{\left( x+3 \right)}+\dfrac{3}{\left( x+4 \right)}+\dfrac{4}{\left( x+5 \right)} \\
\end{align}\]
So by multiplying y on both sides, we get:
\[\dfrac{d\left( y \right)}{dx}=y\left( \dfrac{2}{\left( x+3 \right)}+\dfrac{3}{\left( x+4 \right)}+\dfrac{4}{\left( x+5 \right)} \right)\]
By substituting the value of y,
we get:
\[\dfrac{dy}{dx}=\left( {{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}} \right)\left( \dfrac{2}{\left( x+3 \right)}+\dfrac{3}{\left( x+4 \right)}+\dfrac{4}{\left( x+5 \right)} \right)\]
By simplifying, we get:
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{{{\left( x+3 \right)}^{2}}{{\left( x+4 \right)}^{3}}{{\left( x+5 \right)}^{4}}}{\left( x+3 \right)\left( x+4 \right)\left( x+5 \right)}\left( 2\left( {{x}^{2}}+4x+5x+20 \right)+3\left( {{x}^{2}}+3x+5x+15 \right)+4\left( {{x}^{2}}+3x+4x+12 \right) \right) \\
& \dfrac{dy}{dx}=\dfrac{\left( x+3 \right){{\left( x+4 \right)}^{2}}{{\left( x+5 \right)}^{3}}}{1}\left( 2\left( {{x}^{2}}+9x+20 \right)+3\left( {{x}^{2}}+8x+15 \right)+4\left( {{x}^{2}}+7x+12 \right) \right) \\
& \\
\end{align}\]By solving more and cancelling terms, we get:
\[\begin{align}
& \dfrac{dy}{dx}=\left( x+3 \right){{\left( x+4 \right)}^{2}}{{\left( x+5 \right)}^{3}}\left( \left( 2{{x}^{2}}+18x+40 \right)+\left( 3{{x}^{2}}+24x+45 \right)+\left( 4{{x}^{2}}+28x+48 \right) \right) \\
& \dfrac{dy}{dx}=\left( x+3 \right){{\left( x+4 \right)}^{2}}{{\left( x+5 \right)}^{3}}\left( 9{{x}^{2}}+70x+133 \right) \\
\end{align}\]
So the differentiation of given function is as follows:
\[\dfrac{d\left( {{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}} \right)}{dx}=\left( x+3 \right){{\left( x+4 \right)}^{2}}{{\left( x+5 \right)}^{3}}\left( 9{{x}^{2}}+70x+133 \right)\]
Note: Now let’s write two equations,observe carefully and don’t get confused in these aspects.
\[\begin{align}
& \log \left( a\times b \right)=\log a+\log b\text{ ,but} \\
& \dfrac{d\left( a\times b \right)}{dx}\ne \dfrac{da}{dx}+\dfrac{db}{dx} \\
\end{align}\]
So whenever you see multiplication. First apply logarithm and then differentiate.
Complete step-by-step answer:
Let us assume the function to be y.
So by assuming, we get:
\[y={{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}}\] …..(1)
By taking log on both sides, we get:
\[\log y=\log \left\{ {{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}} \right\}\]
By applying logarithm property,
log(a.b)=log(a)+log(b) …..(2),we get:
\[\log y=\log \left\{ {{\left( x+3 \right)}^{2}} \right\}+\log \left\{ {{\left( x+4 \right)}^{3}} \right\}+\log \left\{ {{\left( x+5 \right)}^{4}} \right\}\]
By applying logarithm property,
\[\log \left( {{a}^{b}} \right)=b\log \left( a \right)\] …..(3), we get:
\[\log y=2\log \left\{ \left( x+3 \right) \right\}+3\log \left\{ \left( x+4 \right) \right\}+4\log \left\{ \left( x+5 \right) \right\}\]
By differentiating both sides w.r.t. x, we get:
\[\dfrac{d\left( \log y \right)}{dx}=\dfrac{d\left( 2\log \left( x+3 \right)+3\log \left( x+4 \right)+4\log \left( x+5 \right) \right)}{dx}\]
By applying differentiation properties,
\[\dfrac{d(a+b)}{dx}=\dfrac{da}{dx}+\dfrac{db}{dx}\] , we get:
\[\dfrac{d\left( \log y \right)}{dx}=\dfrac{d\left( 2\log \left( x+3 \right) \right)}{dx}+\dfrac{d\left( 3\log \left( x+4 \right) \right)}{dx}+\dfrac{d\left( 4\log \left( x+5 \right) \right)}{dx}\]
By applying differentiation properties,
\[\dfrac{d\left( k\times f\left( x \right) \right)}{dx}=k\times \dfrac{d\left( f\left( x \right) \right)}{dx}\]
In the above equation, f(x) is a function of x and k is a constant.
By above, we get:
\[\dfrac{d\left( \log y \right)}{dx}=2\dfrac{d\left( \log \left( x+3 \right) \right)}{dx}+3\dfrac{d\left( \log \left( x+4 \right) \right)}{dx}+4\dfrac{d\left( \log \left( x+5 \right) \right)}{dx}\]
By applying differentiation properties,
\[\dfrac{d\left( \log\left (f\left( x \right)\right) \right)}{dx}=\dfrac{1}{f\left( x \right)}\times \dfrac{d\left( f\left( x \right) \right)}{dx}\]
In the above equation, f(x) is a function of x.
By above, we get:
\[\dfrac{1}{y}\dfrac{d\left( y \right)}{dx}=2\dfrac{1}{\left( x+3 \right)}\dfrac{d\left( x+3\right)}{dx}+3\dfrac{1}{\left( x+4 \right)}\dfrac{d\left( x+4 \right)}{dx}+4\dfrac{1}{\left( x+5 \right)}\dfrac{d\left( x+5 \right)}{dx}\]
By using equation (2), we get:
\[\dfrac{1}{y}\dfrac{d\left( y \right)}{dx}=2\dfrac{1}{\left( x+3 \right)}\left( \dfrac{dx}{dx}+\dfrac{d\left( 3 \right)}{dx} \right)+3\dfrac{1}{\left( x+4 \right)}\left( \dfrac{dx}{dx}+\dfrac{d\left( 4 \right)}{dx} \right)+4\dfrac{1}{\left( x+5 \right)}\left( \dfrac{dx}{dx}+\dfrac{d\left( 5 \right)}{dx} \right)\]
We know differentiation of a constant with respect to x is 0 and differentiation of x with respect to x is 1.
By using these, we get:
\[\begin{align}
& \dfrac{1}{y}\dfrac{d\left( y \right)}{dx}=2\dfrac{1}{\left( x+3 \right)}\left( 1+0 \right)+3\dfrac{1}{\left( x+4 \right)}\left( 1+0 \right)+4\dfrac{1}{\left( x+5 \right)}\left( 1+0 \right) \\
& \dfrac{1}{y}\dfrac{d\left( y \right)}{dx}=\dfrac{2}{\left( x+3 \right)}+\dfrac{3}{\left( x+4 \right)}+\dfrac{4}{\left( x+5 \right)} \\
\end{align}\]
So by multiplying y on both sides, we get:
\[\dfrac{d\left( y \right)}{dx}=y\left( \dfrac{2}{\left( x+3 \right)}+\dfrac{3}{\left( x+4 \right)}+\dfrac{4}{\left( x+5 \right)} \right)\]
By substituting the value of y,
we get:
\[\dfrac{dy}{dx}=\left( {{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}} \right)\left( \dfrac{2}{\left( x+3 \right)}+\dfrac{3}{\left( x+4 \right)}+\dfrac{4}{\left( x+5 \right)} \right)\]
By simplifying, we get:
\[\begin{align}
& \dfrac{dy}{dx}=\dfrac{{{\left( x+3 \right)}^{2}}{{\left( x+4 \right)}^{3}}{{\left( x+5 \right)}^{4}}}{\left( x+3 \right)\left( x+4 \right)\left( x+5 \right)}\left( 2\left( {{x}^{2}}+4x+5x+20 \right)+3\left( {{x}^{2}}+3x+5x+15 \right)+4\left( {{x}^{2}}+3x+4x+12 \right) \right) \\
& \dfrac{dy}{dx}=\dfrac{\left( x+3 \right){{\left( x+4 \right)}^{2}}{{\left( x+5 \right)}^{3}}}{1}\left( 2\left( {{x}^{2}}+9x+20 \right)+3\left( {{x}^{2}}+8x+15 \right)+4\left( {{x}^{2}}+7x+12 \right) \right) \\
& \\
\end{align}\]By solving more and cancelling terms, we get:
\[\begin{align}
& \dfrac{dy}{dx}=\left( x+3 \right){{\left( x+4 \right)}^{2}}{{\left( x+5 \right)}^{3}}\left( \left( 2{{x}^{2}}+18x+40 \right)+\left( 3{{x}^{2}}+24x+45 \right)+\left( 4{{x}^{2}}+28x+48 \right) \right) \\
& \dfrac{dy}{dx}=\left( x+3 \right){{\left( x+4 \right)}^{2}}{{\left( x+5 \right)}^{3}}\left( 9{{x}^{2}}+70x+133 \right) \\
\end{align}\]
So the differentiation of given function is as follows:
\[\dfrac{d\left( {{\left( x+3 \right)}^{2}}\times {{\left( x+4 \right)}^{3}}\times {{\left( x+5 \right)}^{4}} \right)}{dx}=\left( x+3 \right){{\left( x+4 \right)}^{2}}{{\left( x+5 \right)}^{3}}\left( 9{{x}^{2}}+70x+133 \right)\]
Note: Now let’s write two equations,observe carefully and don’t get confused in these aspects.
\[\begin{align}
& \log \left( a\times b \right)=\log a+\log b\text{ ,but} \\
& \dfrac{d\left( a\times b \right)}{dx}\ne \dfrac{da}{dx}+\dfrac{db}{dx} \\
\end{align}\]
So whenever you see multiplication. First apply logarithm and then differentiate.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

