
Differentiate the given function: \[f\left( x \right)=\log \left( x+\sqrt{1+{{x}^{2}}} \right)\]
Answer
584.7k+ views
Hint: First we will write the function using $\sqrt[n]{{{a}^{x}}}={{a}^{\dfrac{x}{n}}}$ , then we will apply the chain rule to start with our differentiation that is $\dfrac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]=f'\left( g\left( x \right) \right).g'\left( x \right)$ , once we get this we will apply the differentiation of logarithm that is $f\left( t \right)=\log t\Rightarrow f'\left( t \right)=\dfrac{1}{t}$ to differentiate the first term. For the second term first we will expand it using the sum rule that is $\dfrac{d\left[ f\left( x \right)+g\left( x \right) \right]}{dx}=f'\left( x \right)+g'\left( x \right)$ then we will use the chain rule as we saw above and eventually power rule $\dfrac{d}{dx}\left[ {{x}^{n}} \right]=n{{x}^{n-1}}$. Finally, we will simplify the expression and get the answer.
Complete step by step answer:
It is given that we have to differentiate the function: \[f\left( x \right)=\log \left( x+\sqrt{1+{{x}^{2}}} \right)\]
Now first we will use $\sqrt[n]{{{a}^{x}}}={{a}^{\dfrac{x}{n}}}$ to rewrite $\sqrt{1+{{x}^{2}}}={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}$
So our function will become: \[f\left( x \right)=\log \left( x+\left( 1+{{x}^{2}} \right)\dfrac{1}{2} \right)\]
We will start by using chain rule which states that: $\dfrac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]=f'\left( g\left( x \right) \right).g'\left( x \right)$
Now, we have with us the function: $\dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{d}{dx}\left[ \log \left( x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right) \right]$ , we will apply chain rule on this so according to chain here, we have $f\left( x \right)=\log \left( g\left( x \right) \right)\text{ and }g\left( x \right)=x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}$ , now we know that if $f\left( t \right)=\log t\Rightarrow f'\left( t \right)=\dfrac{1}{t}$ , therefore $f'\left( g\left( x \right) \right)=\dfrac{1}{g\left( x \right)}$ ,
Putting these values in our function:
\[\begin{align}
& \Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{d}{dx}\left[ \log \left( x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right) \right] \\
& \Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{1}{\left( x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)}\times \dfrac{d}{dx}\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]\text{ }.......\text{Equation 1} \\
\end{align}\]
Now, we will differentiate the second term of the given function that is $x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}$ , we know that the sum rule in derivative states that : $\dfrac{d\left[ f\left( x \right)+g\left( x \right) \right]}{dx}=f'\left( x \right)+g'\left( x \right)$ , therefore
$\dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=\dfrac{d}{dx}\left[ x \right]+\dfrac{d}{dx}\left[ {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]$
Now, we know the power rule states that $\dfrac{d}{dx}\left[ {{x}^{n}} \right]=n{{x}^{n-1}}$ , therefore:
$\begin{align}
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=\dfrac{d}{dx}\left[ x \right]+\dfrac{d}{dx}\left[ {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right] \\
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=1{{x}^{1-1}}+\dfrac{d}{dx}\left[ {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right] \\
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}={{x}^{0}}+\dfrac{d}{dx}\left[ {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right] \\
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=1+\dfrac{d}{dx}\left[ {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right] \\
\end{align}$
We will now again use the chain rule which states that: $\dfrac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]=f'\left( g\left( x \right) \right).g'\left( x \right)$ :
Here, $f\left( x \right)={{\left( g\left( x \right) \right)}^{\dfrac{1}{2}}}\text{ and g}\left( x \right)=\left( 1+{{x}^{2}} \right)$ , we will apply power rule as we saw above on each of these functions therefore:
\[\begin{align}
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=1+\dfrac{d}{dx}\left[ {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right] \\
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=1+\dfrac{1}{2}\left[ {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}-1}} \right]\dfrac{d}{dx}\left[ \left( 1+{{x}^{2}} \right) \right] \\
\end{align}\]
Now, we will expand the $\dfrac{d}{dx}$ into the bracket, therefore we will get:
\[\Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=1+\dfrac{1}{2}\left[ {{\left( 1+{{x}^{2}} \right)}^{-\dfrac{1}{2}}} \right]\left( \dfrac{d}{dx}\left( 1 \right)+\dfrac{d}{dx}\left( {{x}^{2}} \right) \right)\]
We will now differentiate the terms and after differentiating we will get:
\[\begin{align}
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=1+\dfrac{1}{2}\left[ {{\left( 1+{{x}^{2}} \right)}^{-\dfrac{1}{2}}} \right]\left( 0+2\left( {{x}^{2-1}} \right) \right) \\
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=1+\dfrac{1}{2{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}\left( 2x \right) \\
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=1+\dfrac{x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}} \\
\end{align}\]
We will now put this value in equation 1 that is:
\[\begin{align}
& \Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{1}{\left( x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)}\times \dfrac{d}{dx}\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right] \\
& \Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{1}{\left( x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)}\times \left( 1+\dfrac{x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}} \right) \\
\end{align}\]
Now, we will see simplify the expression, first by adding the terms in bracket:
\[\Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{1}{\left( x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)}\times \left( \dfrac{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}} \right)\]
We will now cancel the common terms:
\[\begin{align}
& \Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{1}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}} \\
& \Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{1}{\sqrt{1+{{x}^{2}}}} \\
\end{align}\]
Hence, the differentiation of \[f\left( x \right)=\log \left( x+\sqrt{1+{{x}^{2}}} \right)\] is $f'\left( x \right)=\dfrac{1}{\sqrt{1+{{x}^{2}}}}$ .
Note:
While applying $\sqrt[n]{{{a}^{x}}}={{a}^{\dfrac{x}{n}}}$ to rewrite $\sqrt{1+{{x}^{2}}}={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}$, we by default took $n=2$ as it is understood that we are taking the square root whenever no number is mentioned but let’s suppose if it was written like: $\sqrt[3]{\left( 1+{{x}^{2}} \right)}$ then it would have meant a cube root and we would have taken$n=3$. As there are lots of calculation involved be careful while writing the equations down, one small mistake can change the whole answer.
Complete step by step answer:
It is given that we have to differentiate the function: \[f\left( x \right)=\log \left( x+\sqrt{1+{{x}^{2}}} \right)\]
Now first we will use $\sqrt[n]{{{a}^{x}}}={{a}^{\dfrac{x}{n}}}$ to rewrite $\sqrt{1+{{x}^{2}}}={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}$
So our function will become: \[f\left( x \right)=\log \left( x+\left( 1+{{x}^{2}} \right)\dfrac{1}{2} \right)\]
We will start by using chain rule which states that: $\dfrac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]=f'\left( g\left( x \right) \right).g'\left( x \right)$
Now, we have with us the function: $\dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{d}{dx}\left[ \log \left( x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right) \right]$ , we will apply chain rule on this so according to chain here, we have $f\left( x \right)=\log \left( g\left( x \right) \right)\text{ and }g\left( x \right)=x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}$ , now we know that if $f\left( t \right)=\log t\Rightarrow f'\left( t \right)=\dfrac{1}{t}$ , therefore $f'\left( g\left( x \right) \right)=\dfrac{1}{g\left( x \right)}$ ,
Putting these values in our function:
\[\begin{align}
& \Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{d}{dx}\left[ \log \left( x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right) \right] \\
& \Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{1}{\left( x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)}\times \dfrac{d}{dx}\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]\text{ }.......\text{Equation 1} \\
\end{align}\]
Now, we will differentiate the second term of the given function that is $x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}$ , we know that the sum rule in derivative states that : $\dfrac{d\left[ f\left( x \right)+g\left( x \right) \right]}{dx}=f'\left( x \right)+g'\left( x \right)$ , therefore
$\dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=\dfrac{d}{dx}\left[ x \right]+\dfrac{d}{dx}\left[ {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]$
Now, we know the power rule states that $\dfrac{d}{dx}\left[ {{x}^{n}} \right]=n{{x}^{n-1}}$ , therefore:
$\begin{align}
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=\dfrac{d}{dx}\left[ x \right]+\dfrac{d}{dx}\left[ {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right] \\
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=1{{x}^{1-1}}+\dfrac{d}{dx}\left[ {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right] \\
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}={{x}^{0}}+\dfrac{d}{dx}\left[ {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right] \\
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=1+\dfrac{d}{dx}\left[ {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right] \\
\end{align}$
We will now again use the chain rule which states that: $\dfrac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]=f'\left( g\left( x \right) \right).g'\left( x \right)$ :
Here, $f\left( x \right)={{\left( g\left( x \right) \right)}^{\dfrac{1}{2}}}\text{ and g}\left( x \right)=\left( 1+{{x}^{2}} \right)$ , we will apply power rule as we saw above on each of these functions therefore:
\[\begin{align}
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=1+\dfrac{d}{dx}\left[ {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right] \\
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=1+\dfrac{1}{2}\left[ {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}-1}} \right]\dfrac{d}{dx}\left[ \left( 1+{{x}^{2}} \right) \right] \\
\end{align}\]
Now, we will expand the $\dfrac{d}{dx}$ into the bracket, therefore we will get:
\[\Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=1+\dfrac{1}{2}\left[ {{\left( 1+{{x}^{2}} \right)}^{-\dfrac{1}{2}}} \right]\left( \dfrac{d}{dx}\left( 1 \right)+\dfrac{d}{dx}\left( {{x}^{2}} \right) \right)\]
We will now differentiate the terms and after differentiating we will get:
\[\begin{align}
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=1+\dfrac{1}{2}\left[ {{\left( 1+{{x}^{2}} \right)}^{-\dfrac{1}{2}}} \right]\left( 0+2\left( {{x}^{2-1}} \right) \right) \\
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=1+\dfrac{1}{2{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}\left( 2x \right) \\
& \Rightarrow \dfrac{d\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right]}{dx}=1+\dfrac{x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}} \\
\end{align}\]
We will now put this value in equation 1 that is:
\[\begin{align}
& \Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{1}{\left( x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)}\times \dfrac{d}{dx}\left[ x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right] \\
& \Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{1}{\left( x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)}\times \left( 1+\dfrac{x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}} \right) \\
\end{align}\]
Now, we will see simplify the expression, first by adding the terms in bracket:
\[\Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{1}{\left( x+{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}} \right)}\times \left( \dfrac{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}+x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}} \right)\]
We will now cancel the common terms:
\[\begin{align}
& \Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{1}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}} \\
& \Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{1}{\sqrt{1+{{x}^{2}}}} \\
\end{align}\]
Hence, the differentiation of \[f\left( x \right)=\log \left( x+\sqrt{1+{{x}^{2}}} \right)\] is $f'\left( x \right)=\dfrac{1}{\sqrt{1+{{x}^{2}}}}$ .
Note:
While applying $\sqrt[n]{{{a}^{x}}}={{a}^{\dfrac{x}{n}}}$ to rewrite $\sqrt{1+{{x}^{2}}}={{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}$, we by default took $n=2$ as it is understood that we are taking the square root whenever no number is mentioned but let’s suppose if it was written like: $\sqrt[3]{\left( 1+{{x}^{2}} \right)}$ then it would have meant a cube root and we would have taken$n=3$. As there are lots of calculation involved be careful while writing the equations down, one small mistake can change the whole answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

