
Differentiate the function $\left( {\dfrac{x}{{x + 1}}} \right)$ using the first principle of differentiation?
Answer
489.9k+ views
Hint: The given question wants us to evaluate the derivative of a given rational function $\left( {\dfrac{x}{{x + 1}}} \right)$ using the first principle of derivative. The first principle of differentiation involves the concepts of limits, derivatives, continuity and differentiability. It helps us to determine the derivative of the function using concepts of limits.
Complete step-by-step answer:
Given the function $\left( {\dfrac{x}{{x + 1}}} \right)$, we have to calculate the derivative of the function using the first principle of derivatives.
Using formula of first principle of derivatives, we know that derivative of a function is calculated as:
\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}\]
So, derivative of the given function$f(x) = \cos ec\left( x \right)$,
$ \Rightarrow $\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{\left( {x + h} \right)}}{{\left( {x + h} \right) + 1}} - \dfrac{x}{{x + 1}}}}{h}\]
Taking LCM in the numerator, we get,
$ \Rightarrow $\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{\left( {x + h} \right)\left( {x + 1} \right) - x\left( {\left( {x + h} \right) + 1} \right)}}{{\left( {\left( {x + h} \right) + 1} \right)\left( {x + 1} \right)}}}}{h}\]
Multiplying the terms in numerator, we get,
$ \Rightarrow $\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{x^2} + hx + x + h - {x^2} - xh - x}}{{\left( {\left( {x + h} \right) + 1} \right)\left( {x + 1} \right)h}}\]
Cancelling like terms with opposite signs, we get,
$ \Rightarrow $\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{{\left( {\left( {x + h} \right) + 1} \right)\left( {x + 1} \right)h}}\]
Cancelling common factors in numerator and denominator, we get,
$ \Rightarrow $\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\left( {\left( {x + h} \right) + 1} \right)\left( {x + 1} \right)}}\]
Now, putting in the value of h in the limit, we get,
$ \Rightarrow $\[f'(x) = \dfrac{1}{{\left( {\left( {x + 0} \right) + 1} \right)\left( {x + 1} \right)}}\]
$ \Rightarrow $\[f'(x) = \dfrac{1}{{\left( {x + 1} \right)\left( {x + 1} \right)}}\]
Simplifying the expression further, we get,
$ \Rightarrow $\[f'(x) = \dfrac{1}{{{{\left( {x + 1} \right)}^2}}}\]
So, we get the derivative of $\left( {\dfrac{x}{{x + 1}}} \right)$ as \[\dfrac{1}{{{{\left( {x + 1} \right)}^2}}}\] using the first principle of differentiation.
Note: There are various methods of finding the derivatives of the given functions.
The given function can also be written as $\left( {\dfrac{x}{{x + 1}}} \right) = \left( {\dfrac{{x + 1 - 1}}{{x + 1}}} \right) = 1 - \left( {\dfrac{1}{{x + 1}}} \right)$.
Now, when we differentiate it with respect to x using the chain rule of differentiation $\dfrac{{d\left( {f\left( {g\left( x \right)} \right)} \right)}}{{dx}} = f'\left( {g\left( x \right)} \right) \times g'\left( x \right)$, we get,
$f'\left( x \right) = \dfrac{d}{{dx}}\left[ {1 - \left( {\dfrac{1}{{x + 1}}} \right)} \right] = - \dfrac{d}{{dx}}\left( {\dfrac{1}{{x + 1}}} \right)$
$ \Rightarrow f'\left( x \right) = - \left( { - 1} \right)\left( {\dfrac{1}{{{{\left( {x + 1} \right)}^2}}}} \right) = \dfrac{1}{{{{\left( {x + 1} \right)}^2}}}$
So, we get the same answer from both the methods.
Complete step-by-step answer:
Given the function $\left( {\dfrac{x}{{x + 1}}} \right)$, we have to calculate the derivative of the function using the first principle of derivatives.
Using formula of first principle of derivatives, we know that derivative of a function is calculated as:
\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}\]
So, derivative of the given function$f(x) = \cos ec\left( x \right)$,
$ \Rightarrow $\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{\left( {x + h} \right)}}{{\left( {x + h} \right) + 1}} - \dfrac{x}{{x + 1}}}}{h}\]
Taking LCM in the numerator, we get,
$ \Rightarrow $\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{\left( {x + h} \right)\left( {x + 1} \right) - x\left( {\left( {x + h} \right) + 1} \right)}}{{\left( {\left( {x + h} \right) + 1} \right)\left( {x + 1} \right)}}}}{h}\]
Multiplying the terms in numerator, we get,
$ \Rightarrow $\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{x^2} + hx + x + h - {x^2} - xh - x}}{{\left( {\left( {x + h} \right) + 1} \right)\left( {x + 1} \right)h}}\]
Cancelling like terms with opposite signs, we get,
$ \Rightarrow $\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{{\left( {\left( {x + h} \right) + 1} \right)\left( {x + 1} \right)h}}\]
Cancelling common factors in numerator and denominator, we get,
$ \Rightarrow $\[f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\left( {\left( {x + h} \right) + 1} \right)\left( {x + 1} \right)}}\]
Now, putting in the value of h in the limit, we get,
$ \Rightarrow $\[f'(x) = \dfrac{1}{{\left( {\left( {x + 0} \right) + 1} \right)\left( {x + 1} \right)}}\]
$ \Rightarrow $\[f'(x) = \dfrac{1}{{\left( {x + 1} \right)\left( {x + 1} \right)}}\]
Simplifying the expression further, we get,
$ \Rightarrow $\[f'(x) = \dfrac{1}{{{{\left( {x + 1} \right)}^2}}}\]
So, we get the derivative of $\left( {\dfrac{x}{{x + 1}}} \right)$ as \[\dfrac{1}{{{{\left( {x + 1} \right)}^2}}}\] using the first principle of differentiation.
Note: There are various methods of finding the derivatives of the given functions.
The given function can also be written as $\left( {\dfrac{x}{{x + 1}}} \right) = \left( {\dfrac{{x + 1 - 1}}{{x + 1}}} \right) = 1 - \left( {\dfrac{1}{{x + 1}}} \right)$.
Now, when we differentiate it with respect to x using the chain rule of differentiation $\dfrac{{d\left( {f\left( {g\left( x \right)} \right)} \right)}}{{dx}} = f'\left( {g\left( x \right)} \right) \times g'\left( x \right)$, we get,
$f'\left( x \right) = \dfrac{d}{{dx}}\left[ {1 - \left( {\dfrac{1}{{x + 1}}} \right)} \right] = - \dfrac{d}{{dx}}\left( {\dfrac{1}{{x + 1}}} \right)$
$ \Rightarrow f'\left( x \right) = - \left( { - 1} \right)\left( {\dfrac{1}{{{{\left( {x + 1} \right)}^2}}}} \right) = \dfrac{1}{{{{\left( {x + 1} \right)}^2}}}$
So, we get the same answer from both the methods.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

