
Differentiate the following with respect to x:
y = cosx + sin2x
Answer
604.8k+ views
Hint: Here, we will use the concept that the derivative of a function which is a sum of two different functions is given as the sum of derivative of both the functions.
Complete step-by-step answer:
We know that the derivative of a function y = f(x) of a variable x is a measure of the rate at which the value of y of the function changes with respect to the change of the variable x. This process is called the derivative of f(x) with respect to x.
We also know that derivatives mainly represent the slope of a graph at any given point. It means that it is a ratio of change in the value of the function to the change in the independent variable.
Now, the function given to us is:
y = cosx + sin2x
On differentiating both sides with respect to x, we get:
$\dfrac{dy}{dx}=\dfrac{d\left( \cos x \right)}{dx}+\dfrac{d\left( \sin 2x \right)}{dx}..........(1)$
We know that the derivative of cosx is = -sinx. So, we have:
$\dfrac{d\left( \cos x \right)}{dx}=-\sin x.........(2)$
Now, to find the derivative of sin2x, we may use chain rule.
Chain rule says that if we have to find the derivative of a function y which is a combination of two functions x and t, then:
$\dfrac{dy}{dt}=\dfrac{dy}{dx}\times \dfrac{dx}{dt}$
So, using this chain rule for sin2x and putting 2x =t, we have:
$\begin{align}
& \dfrac{d\left( \sin 2x \right)}{dx}=\dfrac{d\left( \sin t \right)}{dx} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{d\left( \sin t \right)}{dt}\times \dfrac{dt}{dx} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\cos t\times \dfrac{d\left( 2x \right)}{dx} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\cos 2x....................(2) \\
\end{align}$
On substituting the values from equation (2) and (3) in equation (1), we get:
$\dfrac{dy}{dx}=-\sin x+2\cos 2x$
Hence, the derivative of function y = cosx + sin2x is equal to –sinx + 2cos2x.
Note: Students should note here that we apply chain rule to find the derivative of sin2x because it is a function which is a combination of two functions. Do not get confused with sine and cosine derivatives.
Complete step-by-step answer:
We know that the derivative of a function y = f(x) of a variable x is a measure of the rate at which the value of y of the function changes with respect to the change of the variable x. This process is called the derivative of f(x) with respect to x.
We also know that derivatives mainly represent the slope of a graph at any given point. It means that it is a ratio of change in the value of the function to the change in the independent variable.
Now, the function given to us is:
y = cosx + sin2x
On differentiating both sides with respect to x, we get:
$\dfrac{dy}{dx}=\dfrac{d\left( \cos x \right)}{dx}+\dfrac{d\left( \sin 2x \right)}{dx}..........(1)$
We know that the derivative of cosx is = -sinx. So, we have:
$\dfrac{d\left( \cos x \right)}{dx}=-\sin x.........(2)$
Now, to find the derivative of sin2x, we may use chain rule.
Chain rule says that if we have to find the derivative of a function y which is a combination of two functions x and t, then:
$\dfrac{dy}{dt}=\dfrac{dy}{dx}\times \dfrac{dx}{dt}$
So, using this chain rule for sin2x and putting 2x =t, we have:
$\begin{align}
& \dfrac{d\left( \sin 2x \right)}{dx}=\dfrac{d\left( \sin t \right)}{dx} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{d\left( \sin t \right)}{dt}\times \dfrac{dt}{dx} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\cos t\times \dfrac{d\left( 2x \right)}{dx} \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\cos 2x....................(2) \\
\end{align}$
On substituting the values from equation (2) and (3) in equation (1), we get:
$\dfrac{dy}{dx}=-\sin x+2\cos 2x$
Hence, the derivative of function y = cosx + sin2x is equal to –sinx + 2cos2x.
Note: Students should note here that we apply chain rule to find the derivative of sin2x because it is a function which is a combination of two functions. Do not get confused with sine and cosine derivatives.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

State and prove the Pythagoras theorem-class-10-maths-CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

What are the public facilities provided by the government? Also explain each facility

Distinguish between the reserved forests and protected class 10 biology CBSE

