
Differentiate the following trigonometric function \[{\sin ^2}{\text{x}}\] with respect to ${{\text{e}}^{\cos {\text{x}}}}$
Answer
611.4k+ views
Hint- Proceed the solution of this question first considering the given function as two different functions and then differentiate both w.r.t. x, then further dividing both outcomes will give differentiation of one function with respect to another.
Complete step-by-step answer:
Let u= \[{\sin ^2}{\text{x}}\] & v =${{\text{e}}^{\cos {\text{x}}}}$
Here, we have to Differentiate \[{\sin ^2}{\text{x}}\] with respect to ${{\text{e}}^{\cos {\text{x}}}}$.
Step1: Differentiate, u = \[{\sin ^2}{\text{x}}\] with respect to x,
The chain rule tells us how to find the derivative of a composite function.
$\dfrac{{\text{d}}}{{{\text{dx}}}}[{\text{f}}\left( {{\text{g(x)}}} \right)] = {\text{f'}}\left( {{\text{g(x)}}} \right){\text{g'(x)}}$
A function is composite if you can write it as $[{\text{f}}\left( {{\text{g(x)}}} \right)]$.
In other words, it is a function within a function, or a function of a function.
$\dfrac{{{\text{du}}}}{{{\text{dx}}}} = \dfrac{{{\text{d}}\left( {{\text{si}}{{\text{n}}^2}{\text{x}}} \right)}}{{{\text{dx}}}} = 2\sin {\text{x}}{\text{.cos x}}$
Hence, differentiation of \[{\sin ^2}{\text{x}}\] with respect to x is $\dfrac{{{\text{du}}}}{{{\text{dx}}}} = 2\sin {\text{x}}{\text{.cos x}}$
Step2 : Differentiate v = ${{\text{e}}^{\cos {\text{x}}}}$ with respect to x,
$\dfrac{{{\text{dv}}}}{{{\text{dx}}}} = \dfrac{{{\text{d}}{{\text{e}}^{{\text{cosx}}}}}}{{{\text{dx}}}} = - \sin {\text{x}}{\text{.}}{{\text{e}}^{{\text{cosx}}}}$
Hence, differentiation of ${{\text{e}}^{\cos {\text{x}}}}$ with respect to x is $\dfrac{{{\text{dv}}}}{{{\text{dx}}}} = - \sin {\text{x}}{\text{.}}{{\text{e}}^{{\text{cosx}}}}$
Step3 : Now dividing \[\dfrac{{{\text{du}}}}{{{\text{dx}}}}{\text{ by }}\dfrac{{{\text{dv}}}}{{{\text{dx}}}}\] ( we get differentiation of \[{\sin ^2}{\text{x}}\] with respect to ${{\text{e}}^{\cos {\text{x}}}}$)
i.e., \[\dfrac{{\dfrac{{{\text{du}}}}{{{\text{dx}}}}}}{{\dfrac{{{\text{dv}}}}{{{\text{dx}}}}}}{\text{ = }}\dfrac{{{\text{du}}}}{{{\text{dx}}}} \times \dfrac{{{\text{dx}}}}{{{\text{dv}}}} = \dfrac{{{\text{du}}}}{{{\text{dv}}}}\]
So on putting these values from step3 & step3
$ \Rightarrow \dfrac{{2\sin {\text{x}}{\text{.cosx}}}}{{ - \sin {\text{x}}{{\text{e}}^{{\text{cosx}}}}}}$
So \[\dfrac{{{\text{du}}}}{{{\text{dv}}}} = \]$\dfrac{{2\sin {\text{x}}{\text{.cosx}}}}{{ - \sin {\text{x}}{{\text{e}}^{{\text{cosx}}}}}}$
Hence, differentiation of \[{\sin ^2}{\text{x}}\] with respect to ${{\text{e}}^{\cos {\text{x}}}}$ is $\dfrac{{-2{\text{.cosx}}}}{{ {{\text{e}}^{{\text{cosx}}}}}}$
Note- Whenever we came up of such type of question we should understand the meaning of derivative \[\left( {\dfrac{{{\text{du}}}}{{{\text{dv}}}}} \right)\] i.e. rate of change of function u with respect to function v. Hence in the above solution what we are doing, in the first and second step we are differentiating both functions w.r.t. x then on dividing dx term got cancelled hence automatically we get the desired result i.e. rate of change of $1^{st}$ function with respect to $2^{nd}$ function.
Complete step-by-step answer:
Let u= \[{\sin ^2}{\text{x}}\] & v =${{\text{e}}^{\cos {\text{x}}}}$
Here, we have to Differentiate \[{\sin ^2}{\text{x}}\] with respect to ${{\text{e}}^{\cos {\text{x}}}}$.
Step1: Differentiate, u = \[{\sin ^2}{\text{x}}\] with respect to x,
The chain rule tells us how to find the derivative of a composite function.
$\dfrac{{\text{d}}}{{{\text{dx}}}}[{\text{f}}\left( {{\text{g(x)}}} \right)] = {\text{f'}}\left( {{\text{g(x)}}} \right){\text{g'(x)}}$
A function is composite if you can write it as $[{\text{f}}\left( {{\text{g(x)}}} \right)]$.
In other words, it is a function within a function, or a function of a function.
$\dfrac{{{\text{du}}}}{{{\text{dx}}}} = \dfrac{{{\text{d}}\left( {{\text{si}}{{\text{n}}^2}{\text{x}}} \right)}}{{{\text{dx}}}} = 2\sin {\text{x}}{\text{.cos x}}$
Hence, differentiation of \[{\sin ^2}{\text{x}}\] with respect to x is $\dfrac{{{\text{du}}}}{{{\text{dx}}}} = 2\sin {\text{x}}{\text{.cos x}}$
Step2 : Differentiate v = ${{\text{e}}^{\cos {\text{x}}}}$ with respect to x,
$\dfrac{{{\text{dv}}}}{{{\text{dx}}}} = \dfrac{{{\text{d}}{{\text{e}}^{{\text{cosx}}}}}}{{{\text{dx}}}} = - \sin {\text{x}}{\text{.}}{{\text{e}}^{{\text{cosx}}}}$
Hence, differentiation of ${{\text{e}}^{\cos {\text{x}}}}$ with respect to x is $\dfrac{{{\text{dv}}}}{{{\text{dx}}}} = - \sin {\text{x}}{\text{.}}{{\text{e}}^{{\text{cosx}}}}$
Step3 : Now dividing \[\dfrac{{{\text{du}}}}{{{\text{dx}}}}{\text{ by }}\dfrac{{{\text{dv}}}}{{{\text{dx}}}}\] ( we get differentiation of \[{\sin ^2}{\text{x}}\] with respect to ${{\text{e}}^{\cos {\text{x}}}}$)
i.e., \[\dfrac{{\dfrac{{{\text{du}}}}{{{\text{dx}}}}}}{{\dfrac{{{\text{dv}}}}{{{\text{dx}}}}}}{\text{ = }}\dfrac{{{\text{du}}}}{{{\text{dx}}}} \times \dfrac{{{\text{dx}}}}{{{\text{dv}}}} = \dfrac{{{\text{du}}}}{{{\text{dv}}}}\]
So on putting these values from step3 & step3
$ \Rightarrow \dfrac{{2\sin {\text{x}}{\text{.cosx}}}}{{ - \sin {\text{x}}{{\text{e}}^{{\text{cosx}}}}}}$
So \[\dfrac{{{\text{du}}}}{{{\text{dv}}}} = \]$\dfrac{{2\sin {\text{x}}{\text{.cosx}}}}{{ - \sin {\text{x}}{{\text{e}}^{{\text{cosx}}}}}}$
Hence, differentiation of \[{\sin ^2}{\text{x}}\] with respect to ${{\text{e}}^{\cos {\text{x}}}}$ is $\dfrac{{-2{\text{.cosx}}}}{{ {{\text{e}}^{{\text{cosx}}}}}}$
Note- Whenever we came up of such type of question we should understand the meaning of derivative \[\left( {\dfrac{{{\text{du}}}}{{{\text{dv}}}}} \right)\] i.e. rate of change of function u with respect to function v. Hence in the above solution what we are doing, in the first and second step we are differentiating both functions w.r.t. x then on dividing dx term got cancelled hence automatically we get the desired result i.e. rate of change of $1^{st}$ function with respect to $2^{nd}$ function.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

