
Differentiate the following function with respect to\[x\]:$\sqrt{\tan \sqrt{x}}$.
Answer
588k+ views
Hint: Let$y=\sqrt{\tan \sqrt{x}}$, then differentiate y with respect to $x$.
First of all let us see what is the differentiation of $\tan x$and $\sqrt{x}$.
Then we have
$\dfrac{d\left( \tan x \right)}{dx}={{\sec }^{2}}x$
$\dfrac{d\sqrt{x}}{dx}=\dfrac{d{{\left( x \right)}^{\dfrac{1}{2}}}}{dx}$
As we know ${{\dfrac{d\left( x \right)}{dx}}^{n}}=n{{x}^{n-1}}$
Therefore we have, $\dfrac{d{{\left( x \right)}^{\dfrac{1}{2}}}}{dx}=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}}$ $=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}}=\dfrac{1}{2}{{x}^{-\dfrac{1}{2}}}=\dfrac{1}{2\sqrt{x}}$.
Complete step by step answer:
Now we will find the differentiation of $\sqrt{\tan \sqrt{x}}$with respect to$x$.
For this, let us consider
$y=\sqrt{\tan \sqrt{x}}$
Differentiating y with respect to$x$, we get
$\dfrac{dy}{dx}=\dfrac{d}{dx}\sqrt{\tan \sqrt{x}}$
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2\tan \sqrt{x}}.\dfrac{d\left( \tan \sqrt{x} \right)}{dx}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2\tan \sqrt{x}}.{{\sec }^{2}}\sqrt{x}.\dfrac{d\left( \sqrt{x} \right)}{dx}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2\tan \sqrt{x}}.{{\sec }^{2}}\sqrt{x}.\dfrac{1}{2\sqrt{x}}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{{{\sec }^{2}}\sqrt{x}}{4\sqrt{x}\tan \sqrt{x}}\]
$\therefore \dfrac{d\left( \sqrt{\tan \sqrt{x}} \right)}{dx}=\dfrac{{{\sec }^{2}}\sqrt{x}}{4\sqrt{x}\tan \sqrt{x}}$
Hence, differentiation of $\sqrt{\tan \sqrt{x}}$with respect to $x$ is $\dfrac{d\left( \sqrt{\tan \sqrt{x}} \right)}{dx}=\dfrac{{{\sec }^{2}}\sqrt{x}}{4\sqrt{x}\tan \sqrt{x}}$.
Note: The basic differentiation rules that need to be followed are:
(a) Sum or difference rule – If the function is sum or difference of two function, then the derivatives of the function is the sum or difference of the individual functions, i.e., if $x=y\pm z$, then $\dfrac{dx}{dt}=\dfrac{dy}{dt}\pm \dfrac{dz}{dt}$.
(b) Product rule – As per the product rule, if function $x$is the product of two functions $y$ and$z$, then the derivative of the function is as below.
If$x=yz$, then
\[\dfrac{dx}{dt}=\dfrac{dy}{dt}.z+\dfrac{dz}{dt}.y\]
(c) Quotient rule – If the function $x$ is in the form two functions$\dfrac{y}{z}$, then the derivative of the function is as below.
If $x=\dfrac{y}{z}$, then
$\dfrac{dx}{dt}=\dfrac{\dfrac{dy}{dt}.z-\dfrac{dz}{dt}.y}{{{z}^{2}}}$ .
(d) Chain rule – If a function $y=f\left( x \right)=g\left( u \right)$ and if$u=h\left( x \right)$, then the chain rule for differentiation is defined as,
$\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}$.
This plays a major role in the method of substitution that helps to perform differentiation of composite functions.
First of all let us see what is the differentiation of $\tan x$and $\sqrt{x}$.
Then we have
$\dfrac{d\left( \tan x \right)}{dx}={{\sec }^{2}}x$
$\dfrac{d\sqrt{x}}{dx}=\dfrac{d{{\left( x \right)}^{\dfrac{1}{2}}}}{dx}$
As we know ${{\dfrac{d\left( x \right)}{dx}}^{n}}=n{{x}^{n-1}}$
Therefore we have, $\dfrac{d{{\left( x \right)}^{\dfrac{1}{2}}}}{dx}=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}}$ $=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}}=\dfrac{1}{2}{{x}^{-\dfrac{1}{2}}}=\dfrac{1}{2\sqrt{x}}$.
Complete step by step answer:
Now we will find the differentiation of $\sqrt{\tan \sqrt{x}}$with respect to$x$.
For this, let us consider
$y=\sqrt{\tan \sqrt{x}}$
Differentiating y with respect to$x$, we get
$\dfrac{dy}{dx}=\dfrac{d}{dx}\sqrt{\tan \sqrt{x}}$
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2\tan \sqrt{x}}.\dfrac{d\left( \tan \sqrt{x} \right)}{dx}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2\tan \sqrt{x}}.{{\sec }^{2}}\sqrt{x}.\dfrac{d\left( \sqrt{x} \right)}{dx}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2\tan \sqrt{x}}.{{\sec }^{2}}\sqrt{x}.\dfrac{1}{2\sqrt{x}}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{{{\sec }^{2}}\sqrt{x}}{4\sqrt{x}\tan \sqrt{x}}\]
$\therefore \dfrac{d\left( \sqrt{\tan \sqrt{x}} \right)}{dx}=\dfrac{{{\sec }^{2}}\sqrt{x}}{4\sqrt{x}\tan \sqrt{x}}$
Hence, differentiation of $\sqrt{\tan \sqrt{x}}$with respect to $x$ is $\dfrac{d\left( \sqrt{\tan \sqrt{x}} \right)}{dx}=\dfrac{{{\sec }^{2}}\sqrt{x}}{4\sqrt{x}\tan \sqrt{x}}$.
Note: The basic differentiation rules that need to be followed are:
(a) Sum or difference rule – If the function is sum or difference of two function, then the derivatives of the function is the sum or difference of the individual functions, i.e., if $x=y\pm z$, then $\dfrac{dx}{dt}=\dfrac{dy}{dt}\pm \dfrac{dz}{dt}$.
(b) Product rule – As per the product rule, if function $x$is the product of two functions $y$ and$z$, then the derivative of the function is as below.
If$x=yz$, then
\[\dfrac{dx}{dt}=\dfrac{dy}{dt}.z+\dfrac{dz}{dt}.y\]
(c) Quotient rule – If the function $x$ is in the form two functions$\dfrac{y}{z}$, then the derivative of the function is as below.
If $x=\dfrac{y}{z}$, then
$\dfrac{dx}{dt}=\dfrac{\dfrac{dy}{dt}.z-\dfrac{dz}{dt}.y}{{{z}^{2}}}$ .
(d) Chain rule – If a function $y=f\left( x \right)=g\left( u \right)$ and if$u=h\left( x \right)$, then the chain rule for differentiation is defined as,
$\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}$.
This plays a major role in the method of substitution that helps to perform differentiation of composite functions.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

