
Differentiate the following function with respect to\[x\]:$\sqrt{\tan \sqrt{x}}$.
Answer
510k+ views
Hint: Let$y=\sqrt{\tan \sqrt{x}}$, then differentiate y with respect to $x$.
First of all let us see what is the differentiation of $\tan x$and $\sqrt{x}$.
Then we have
$\dfrac{d\left( \tan x \right)}{dx}={{\sec }^{2}}x$
$\dfrac{d\sqrt{x}}{dx}=\dfrac{d{{\left( x \right)}^{\dfrac{1}{2}}}}{dx}$
As we know ${{\dfrac{d\left( x \right)}{dx}}^{n}}=n{{x}^{n-1}}$
Therefore we have, $\dfrac{d{{\left( x \right)}^{\dfrac{1}{2}}}}{dx}=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}}$ $=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}}=\dfrac{1}{2}{{x}^{-\dfrac{1}{2}}}=\dfrac{1}{2\sqrt{x}}$.
Complete step by step answer:
Now we will find the differentiation of $\sqrt{\tan \sqrt{x}}$with respect to$x$.
For this, let us consider
$y=\sqrt{\tan \sqrt{x}}$
Differentiating y with respect to$x$, we get
$\dfrac{dy}{dx}=\dfrac{d}{dx}\sqrt{\tan \sqrt{x}}$
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2\tan \sqrt{x}}.\dfrac{d\left( \tan \sqrt{x} \right)}{dx}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2\tan \sqrt{x}}.{{\sec }^{2}}\sqrt{x}.\dfrac{d\left( \sqrt{x} \right)}{dx}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2\tan \sqrt{x}}.{{\sec }^{2}}\sqrt{x}.\dfrac{1}{2\sqrt{x}}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{{{\sec }^{2}}\sqrt{x}}{4\sqrt{x}\tan \sqrt{x}}\]
$\therefore \dfrac{d\left( \sqrt{\tan \sqrt{x}} \right)}{dx}=\dfrac{{{\sec }^{2}}\sqrt{x}}{4\sqrt{x}\tan \sqrt{x}}$
Hence, differentiation of $\sqrt{\tan \sqrt{x}}$with respect to $x$ is $\dfrac{d\left( \sqrt{\tan \sqrt{x}} \right)}{dx}=\dfrac{{{\sec }^{2}}\sqrt{x}}{4\sqrt{x}\tan \sqrt{x}}$.
Note: The basic differentiation rules that need to be followed are:
(a) Sum or difference rule – If the function is sum or difference of two function, then the derivatives of the function is the sum or difference of the individual functions, i.e., if $x=y\pm z$, then $\dfrac{dx}{dt}=\dfrac{dy}{dt}\pm \dfrac{dz}{dt}$.
(b) Product rule – As per the product rule, if function $x$is the product of two functions $y$ and$z$, then the derivative of the function is as below.
If$x=yz$, then
\[\dfrac{dx}{dt}=\dfrac{dy}{dt}.z+\dfrac{dz}{dt}.y\]
(c) Quotient rule – If the function $x$ is in the form two functions$\dfrac{y}{z}$, then the derivative of the function is as below.
If $x=\dfrac{y}{z}$, then
$\dfrac{dx}{dt}=\dfrac{\dfrac{dy}{dt}.z-\dfrac{dz}{dt}.y}{{{z}^{2}}}$ .
(d) Chain rule – If a function $y=f\left( x \right)=g\left( u \right)$ and if$u=h\left( x \right)$, then the chain rule for differentiation is defined as,
$\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}$.
This plays a major role in the method of substitution that helps to perform differentiation of composite functions.
First of all let us see what is the differentiation of $\tan x$and $\sqrt{x}$.
Then we have
$\dfrac{d\left( \tan x \right)}{dx}={{\sec }^{2}}x$
$\dfrac{d\sqrt{x}}{dx}=\dfrac{d{{\left( x \right)}^{\dfrac{1}{2}}}}{dx}$
As we know ${{\dfrac{d\left( x \right)}{dx}}^{n}}=n{{x}^{n-1}}$
Therefore we have, $\dfrac{d{{\left( x \right)}^{\dfrac{1}{2}}}}{dx}=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}}$ $=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}}=\dfrac{1}{2}{{x}^{-\dfrac{1}{2}}}=\dfrac{1}{2\sqrt{x}}$.
Complete step by step answer:
Now we will find the differentiation of $\sqrt{\tan \sqrt{x}}$with respect to$x$.
For this, let us consider
$y=\sqrt{\tan \sqrt{x}}$
Differentiating y with respect to$x$, we get
$\dfrac{dy}{dx}=\dfrac{d}{dx}\sqrt{\tan \sqrt{x}}$
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2\tan \sqrt{x}}.\dfrac{d\left( \tan \sqrt{x} \right)}{dx}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2\tan \sqrt{x}}.{{\sec }^{2}}\sqrt{x}.\dfrac{d\left( \sqrt{x} \right)}{dx}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2\tan \sqrt{x}}.{{\sec }^{2}}\sqrt{x}.\dfrac{1}{2\sqrt{x}}\]
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{{{\sec }^{2}}\sqrt{x}}{4\sqrt{x}\tan \sqrt{x}}\]
$\therefore \dfrac{d\left( \sqrt{\tan \sqrt{x}} \right)}{dx}=\dfrac{{{\sec }^{2}}\sqrt{x}}{4\sqrt{x}\tan \sqrt{x}}$
Hence, differentiation of $\sqrt{\tan \sqrt{x}}$with respect to $x$ is $\dfrac{d\left( \sqrt{\tan \sqrt{x}} \right)}{dx}=\dfrac{{{\sec }^{2}}\sqrt{x}}{4\sqrt{x}\tan \sqrt{x}}$.
Note: The basic differentiation rules that need to be followed are:
(a) Sum or difference rule – If the function is sum or difference of two function, then the derivatives of the function is the sum or difference of the individual functions, i.e., if $x=y\pm z$, then $\dfrac{dx}{dt}=\dfrac{dy}{dt}\pm \dfrac{dz}{dt}$.
(b) Product rule – As per the product rule, if function $x$is the product of two functions $y$ and$z$, then the derivative of the function is as below.
If$x=yz$, then
\[\dfrac{dx}{dt}=\dfrac{dy}{dt}.z+\dfrac{dz}{dt}.y\]
(c) Quotient rule – If the function $x$ is in the form two functions$\dfrac{y}{z}$, then the derivative of the function is as below.
If $x=\dfrac{y}{z}$, then
$\dfrac{dx}{dt}=\dfrac{\dfrac{dy}{dt}.z-\dfrac{dz}{dt}.y}{{{z}^{2}}}$ .
(d) Chain rule – If a function $y=f\left( x \right)=g\left( u \right)$ and if$u=h\left( x \right)$, then the chain rule for differentiation is defined as,
$\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}$.
This plays a major role in the method of substitution that helps to perform differentiation of composite functions.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
