
Differentiate the following function with respect to $x$:
${{x}^{n}}{{\log }_{a}}x\text{ }{{e}^{x}}$
Answer
607.2k+ views
Hint: For solving this question we will write the term ${{\log }_{a}}x$ as $\dfrac{\ln x}{\ln a}$ in the given function and then, differentiate $y=\dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)$ with respect to $x$. After that, we will apply the product rule of differential calculus, and formulas like $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$, $\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$ and $\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}}$. Then, we will arrange the terms in the result to get the final answer.
Complete step-by-step answer:
We to differentiate the following function with respect to $x$:
$y={{x}^{n}}{{\log }_{a}}x\text{ }{{e}^{x}}$
Now, as we will use the formula ${{\log }_{c}}b=\dfrac{{{\log }_{e}}b}{{{\log }_{e}}c}$ to write ${{\log }_{a}}x=\dfrac{{{\log }_{e}}x}{{{\log }_{e}}a}$ in the above equation. Then,
$\begin{align}
& y={{x}^{n}}{{\log }_{a}}x\text{ }{{e}^{x}} \\
& \Rightarrow y={{x}^{n}}\times \dfrac{{{\log }_{e}}x}{{{\log }_{e}}a}\times {{e}^{x}} \\
\end{align}$
Now, we can write ${{\log }_{e}}x=\ln x$ and ${{\log }_{e}}a=\ln a$ in the above equation. Then,
$\begin{align}
& y={{x}^{n}}\times \dfrac{{{\log }_{e}}x}{{{\log }_{e}}a}\times {{e}^{x}} \\
& \Rightarrow y=\dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)..................\left( 1 \right) \\
\end{align}$
Now, before we proceed, we should know the following formulas and concepts of differential calculus:
1. If $y=f\left( x \right)\cdot g\left( x \right)$ , then $\dfrac{dy}{dx}=\dfrac{d\left( f\left( x \right)\cdot g\left( x \right) \right)}{dx}={f}'\left( x \right)\cdot g\left( x \right)+f\left( x \right)\cdot {g}'\left( x \right)$ . This is also known as the product rule of differentiation.
2. If $y={{x}^{n}}$ , then $\dfrac{dy}{dx}=\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$ .
3. If $y=\ln x$ , then $\dfrac{dy}{dx}=\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$ .
4. If $y={{e}^{x}}$ , then $\dfrac{dy}{dx}=\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}}$ .
Now, from the equation (1) we have the following equation:
$y=\dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)$
Now, we will differentiate the above equation with respect to $x$ . Then,
$\begin{align}
& y=\dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right) \right)}{dx} \\
\end{align}$
Now, as $\dfrac{1}{\ln a}$ is a constant term so, we can write $\dfrac{d\left( \dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right) \right)}{dx}=\dfrac{1}{\ln a}\dfrac{d\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)}{dx}$ . Then,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{d\left( \dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right) \right)}{dx} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\ln a}\dfrac{d\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)}{dx} \\
\end{align}$
Now, we will use the product rule of differentiation to write $\dfrac{d\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)}{dx}=\left( \ln x\text{ }{{e}^{x}} \right)\times \dfrac{d\left( {{x}^{n}} \right)}{dx}+\left( {{x}^{n}}{{e}^{x}} \right)\times \dfrac{d\left( \ln x \right)}{dx}+\left( {{x}^{n}}\ln x \right)\times \dfrac{d\left( {{e}^{x}} \right)}{dx}$ in the above equation. Then,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{1}{\ln a}\dfrac{d\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)}{dx} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\ln a}\times \left( \left( \ln x\text{ }{{e}^{x}} \right)\times \dfrac{d\left( {{x}^{n}} \right)}{dx}+\left( {{x}^{n}}{{e}^{x}} \right)\times \dfrac{d\left( \ln x \right)}{dx}+\left( {{x}^{n}}\ln x \right)\times \dfrac{d\left( {{e}^{x}} \right)}{dx} \right) \\
\end{align}$
Now, we will use the formulas of the differential calculus discussed above, to write $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$ , $\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$ and $\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}}$ in the above equation. Then,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{1}{\ln a}\times \left( \left( \ln x\text{ }{{e}^{x}} \right)\times \dfrac{d\left( {{x}^{n}} \right)}{dx}+\left( {{x}^{n}}{{e}^{x}} \right)\times \dfrac{d\left( \ln x \right)}{dx}+\left( {{x}^{n}}\ln x \right)\times \dfrac{d\left( {{e}^{x}} \right)}{dx} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\ln a}\left( \left( \ln x\text{ }{{e}^{x}} \right)\times \left( n{{x}^{n-1}} \right)+\left( {{x}^{n}}{{e}^{x}} \right)\times \dfrac{1}{x}+\left( {{x}^{n}}\ln x \right)\times {{e}^{x}} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\ln a}\left( n{{x}^{n-1}}\ln x\text{ }{{e}^{x}}+{{x}^{n-1}}{{e}^{x}}+{{x}^{n}}\ln x\text{ }{{e}^{x}} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{{{x}^{n-1}}{{e}^{x}}}{\ln a}\left( n\ln x+x\ln x+1 \right) \\
\end{align}$
Now, from the above result we conclude that if $y={{x}^{n}}{{\log }_{a}}x\text{ }{{e}^{x}}$ then, differentiation of $y$ with respect to $x$ will be $\dfrac{dy}{dx}=\dfrac{{{x}^{n-1}}{{e}^{x}}}{\ln a}\left( n\ln x+x\ln x+1 \right)$ .
Thus, $\dfrac{dy}{dx}=\dfrac{{{x}^{n-1}}{{e}^{x}}}{\ln a}\left( n\ln x+x\ln x+1 \right)$ will be our final answer.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. And first, we should write the term ${{\log }_{a}}x$as $\dfrac{\ln x}{\ln a}$ and then, differentiate $y=\dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)$ with respect to $x$ . Moreover, we should apply the product rule of differential calculus, and formulas like $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$ , $\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$ and $\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}}$ correctly without any mathematical error to get the correct answer easily.
Complete step-by-step answer:
We to differentiate the following function with respect to $x$:
$y={{x}^{n}}{{\log }_{a}}x\text{ }{{e}^{x}}$
Now, as we will use the formula ${{\log }_{c}}b=\dfrac{{{\log }_{e}}b}{{{\log }_{e}}c}$ to write ${{\log }_{a}}x=\dfrac{{{\log }_{e}}x}{{{\log }_{e}}a}$ in the above equation. Then,
$\begin{align}
& y={{x}^{n}}{{\log }_{a}}x\text{ }{{e}^{x}} \\
& \Rightarrow y={{x}^{n}}\times \dfrac{{{\log }_{e}}x}{{{\log }_{e}}a}\times {{e}^{x}} \\
\end{align}$
Now, we can write ${{\log }_{e}}x=\ln x$ and ${{\log }_{e}}a=\ln a$ in the above equation. Then,
$\begin{align}
& y={{x}^{n}}\times \dfrac{{{\log }_{e}}x}{{{\log }_{e}}a}\times {{e}^{x}} \\
& \Rightarrow y=\dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)..................\left( 1 \right) \\
\end{align}$
Now, before we proceed, we should know the following formulas and concepts of differential calculus:
1. If $y=f\left( x \right)\cdot g\left( x \right)$ , then $\dfrac{dy}{dx}=\dfrac{d\left( f\left( x \right)\cdot g\left( x \right) \right)}{dx}={f}'\left( x \right)\cdot g\left( x \right)+f\left( x \right)\cdot {g}'\left( x \right)$ . This is also known as the product rule of differentiation.
2. If $y={{x}^{n}}$ , then $\dfrac{dy}{dx}=\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$ .
3. If $y=\ln x$ , then $\dfrac{dy}{dx}=\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$ .
4. If $y={{e}^{x}}$ , then $\dfrac{dy}{dx}=\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}}$ .
Now, from the equation (1) we have the following equation:
$y=\dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)$
Now, we will differentiate the above equation with respect to $x$ . Then,
$\begin{align}
& y=\dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{d\left( \dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right) \right)}{dx} \\
\end{align}$
Now, as $\dfrac{1}{\ln a}$ is a constant term so, we can write $\dfrac{d\left( \dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right) \right)}{dx}=\dfrac{1}{\ln a}\dfrac{d\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)}{dx}$ . Then,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{d\left( \dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right) \right)}{dx} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\ln a}\dfrac{d\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)}{dx} \\
\end{align}$
Now, we will use the product rule of differentiation to write $\dfrac{d\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)}{dx}=\left( \ln x\text{ }{{e}^{x}} \right)\times \dfrac{d\left( {{x}^{n}} \right)}{dx}+\left( {{x}^{n}}{{e}^{x}} \right)\times \dfrac{d\left( \ln x \right)}{dx}+\left( {{x}^{n}}\ln x \right)\times \dfrac{d\left( {{e}^{x}} \right)}{dx}$ in the above equation. Then,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{1}{\ln a}\dfrac{d\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)}{dx} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\ln a}\times \left( \left( \ln x\text{ }{{e}^{x}} \right)\times \dfrac{d\left( {{x}^{n}} \right)}{dx}+\left( {{x}^{n}}{{e}^{x}} \right)\times \dfrac{d\left( \ln x \right)}{dx}+\left( {{x}^{n}}\ln x \right)\times \dfrac{d\left( {{e}^{x}} \right)}{dx} \right) \\
\end{align}$
Now, we will use the formulas of the differential calculus discussed above, to write $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$ , $\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$ and $\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}}$ in the above equation. Then,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{1}{\ln a}\times \left( \left( \ln x\text{ }{{e}^{x}} \right)\times \dfrac{d\left( {{x}^{n}} \right)}{dx}+\left( {{x}^{n}}{{e}^{x}} \right)\times \dfrac{d\left( \ln x \right)}{dx}+\left( {{x}^{n}}\ln x \right)\times \dfrac{d\left( {{e}^{x}} \right)}{dx} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\ln a}\left( \left( \ln x\text{ }{{e}^{x}} \right)\times \left( n{{x}^{n-1}} \right)+\left( {{x}^{n}}{{e}^{x}} \right)\times \dfrac{1}{x}+\left( {{x}^{n}}\ln x \right)\times {{e}^{x}} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\ln a}\left( n{{x}^{n-1}}\ln x\text{ }{{e}^{x}}+{{x}^{n-1}}{{e}^{x}}+{{x}^{n}}\ln x\text{ }{{e}^{x}} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{{{x}^{n-1}}{{e}^{x}}}{\ln a}\left( n\ln x+x\ln x+1 \right) \\
\end{align}$
Now, from the above result we conclude that if $y={{x}^{n}}{{\log }_{a}}x\text{ }{{e}^{x}}$ then, differentiation of $y$ with respect to $x$ will be $\dfrac{dy}{dx}=\dfrac{{{x}^{n-1}}{{e}^{x}}}{\ln a}\left( n\ln x+x\ln x+1 \right)$ .
Thus, $\dfrac{dy}{dx}=\dfrac{{{x}^{n-1}}{{e}^{x}}}{\ln a}\left( n\ln x+x\ln x+1 \right)$ will be our final answer.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. And first, we should write the term ${{\log }_{a}}x$as $\dfrac{\ln x}{\ln a}$ and then, differentiate $y=\dfrac{1}{\ln a}\left( {{x}^{n}}\ln x\text{ }{{e}^{x}} \right)$ with respect to $x$ . Moreover, we should apply the product rule of differential calculus, and formulas like $\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$ , $\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$ and $\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}}$ correctly without any mathematical error to get the correct answer easily.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

