
Differentiate the following function with respect to x.
$\left( 1+{{x}^{2}} \right)\cos x.$
Answer
607.8k+ views
Hint: when we have to differentiate product of two continuous functions we use$\dfrac{d}{dx}\left[ f(x)g(x) \right]=f(x)\dfrac{d}{dx}g(x)+g(x)\dfrac{d}{dx}g(x)$
Complete step-by-step answer:
Now let us assume here $f(x)=1+{{x}^{2}}$ and $g(x)=\cos x$
So we can write$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left[ (1+{{x}^{2}})\cos x \right]=(1+{{x}^{2}})\dfrac{d}{dx}(\cos x)+\cos x\dfrac{d}{dx}(1+{{x}^{2}}) \\
& \Rightarrow \dfrac{d}{dx}\left[ (1+{{x}^{2}})\cos x \right]=(1+{{x}^{2}})(-\sin x)+\cos x(0+2x) \\
\end{align}$
As we know that
$\begin{align}
& \dfrac{d}{dx}\cos x=-\sin x \\
& \dfrac{d(cons\tan t)}{dx}=0 \\
& \dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}} \\
& \dfrac{d}{dx}\left[ f(x)+g(x) \right]=\dfrac{d}{dx}\left[ f(x) \right]+\dfrac{d}{dx}\left[ g(x) \right] \\
\end{align}$
So we can write
$\dfrac{d}{dx}\left[ (1+{{x}^{2}})\cos x \right]=-\sin x-{{x}^{2}}\sin x+2x\cos x$
Note: Here we can take $g(x)=(1+{{x}^{2}})$ and$f(x)=\cos x,$ the result will be the same. Order is not important when we differentiate the product of two continuous functions.
Complete step-by-step answer:
Now let us assume here $f(x)=1+{{x}^{2}}$ and $g(x)=\cos x$
So we can write$\begin{align}
& \Rightarrow \dfrac{d}{dx}\left[ (1+{{x}^{2}})\cos x \right]=(1+{{x}^{2}})\dfrac{d}{dx}(\cos x)+\cos x\dfrac{d}{dx}(1+{{x}^{2}}) \\
& \Rightarrow \dfrac{d}{dx}\left[ (1+{{x}^{2}})\cos x \right]=(1+{{x}^{2}})(-\sin x)+\cos x(0+2x) \\
\end{align}$
As we know that
$\begin{align}
& \dfrac{d}{dx}\cos x=-\sin x \\
& \dfrac{d(cons\tan t)}{dx}=0 \\
& \dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}} \\
& \dfrac{d}{dx}\left[ f(x)+g(x) \right]=\dfrac{d}{dx}\left[ f(x) \right]+\dfrac{d}{dx}\left[ g(x) \right] \\
\end{align}$
So we can write
$\dfrac{d}{dx}\left[ (1+{{x}^{2}})\cos x \right]=-\sin x-{{x}^{2}}\sin x+2x\cos x$
Note: Here we can take $g(x)=(1+{{x}^{2}})$ and$f(x)=\cos x,$ the result will be the same. Order is not important when we differentiate the product of two continuous functions.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

