
Differentiate the following expression w.r.t. $x$
$\sqrt{x}\left( {{x}^{3}}+{{x}^{2}}-3x \right)$
(a) $\dfrac{1}{2\sqrt{x}}\left( 7{{x}^{3}}+5{{x}^{2}}+9x \right)$
(b) $\dfrac{1}{2\sqrt{x}}\left( 7{{x}^{3}}+5{{x}^{2}}-9x \right)$
(c) $\dfrac{1}{2\sqrt{x}}\left( 7{{x}^{3}}-5{{x}^{2}}-9x \right)$
(d) $\dfrac{1}{2\sqrt{x}}\left( -7{{x}^{3}}+5{{x}^{2}}-9x \right)$
Answer
610.5k+ views
Hint: Use multiplication rule of differentiation. It is given as
$\dfrac{d}{dx}\left( u.v \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$
Apply this formula to get the differentiation of the equation given. Use the relation
$\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ to get the answer.
Complete step-by-step solution -
As we need to find the differentiation of $\sqrt{x}\left( {{x}^{3}}+{{x}^{2}}-3x \right)$ . So, let us suppose the given expression is represented by $'y'$ .So, we get
$y=\sqrt{x}\left( {{x}^{3}}+{{x}^{2}}-3x \right)........\left( i \right)$
As we can observe the equation(i) and get that $\sqrt{x}$ and ${{x}^{3}}+{{x}^{2}}-3x$ are in multiplication form. So, we can use multiplication rule of differentiation, which is given as
$\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}..........\left( ii \right)$
Now, we can put value of ‘u’ as $\sqrt{x}$ and ‘v’ as ${{x}^{2}}+{{x}^{2}}-3x$ and use the relation given in equation(i). So, we get
$\dfrac{d}{dx}\left( \sqrt{x}\left( {{x}^{3}}+{{x}^{2}}-3x \right) \right)=\dfrac{dy}{dx}=\sqrt{x}\dfrac{d}{dx}\left( {{x}^{3}}+{{x}^{2}}-3x \right)+\left( {{x}^{3}}+{{x}^{2}}-3x \right)\dfrac{d}{dx}\left( \sqrt{x} \right)$
Now, we know the derivative of ${{x}^{n}}$ is given as
$\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}..........\left( iii \right)$
Hence, we can get value of $\dfrac{dy}{dx}$ as
$\dfrac{dy}{dx}={{x}^{\dfrac{1}{2}}}\left[ \dfrac{d}{dx}{{x}^{3}}+\dfrac{d}{dx}{{x}^{2}}-3\dfrac{d}{dx}x \right]+\left( {{x}^{3}}+{{x}^{2}}-3x \right)\dfrac{d}{dx}\left( {{x}^{\dfrac{1}{2}}} \right)$
Now using the relation (iii), we get
$\dfrac{dy}{dx}={{x}^{\dfrac{1}{2}}}\left[ 3{{x}^{2}}+2x-3 \right]+\left( {{x}^{3}}+{{x}^{2}}-3x \right)\times \dfrac{1}{2}{{x}^{-\dfrac{1}{2}}}$
$\dfrac{dy}{dx}={{x}^{\dfrac{1}{2}}}\left[ 3{{x}^{2}}+2x-3 \right]+\left( {{x}^{3}}+{{x}^{2}}-3x \right)\times \dfrac{{{x}^{-\dfrac{1}{2}}}}{2}$
Now, we know the property of surds given as
\[\begin{align}
& {{a}^{-m}}=\dfrac{1}{{{a}^{m}}}.........\left( iv \right) \\
& {{a}^{m}}.{{a}^{n}}={{a}^{m+n}}.....\left( v \right) \\
\end{align}\]
Now, we can use above relations and hence get the value of $\dfrac{dy}{dx}$ as
\[\begin{align}
& \dfrac{dy}{dx}={{x}^{\dfrac{1}{2}}}\left[ 3{{x}^{2}}+2x-3 \right]+\left( {{x}^{3}}+{{x}^{2}}-3x \right)\times \dfrac{1}{2{{x}^{\dfrac{1}{2}}}} \\
& \dfrac{dy}{dx}={{x}^{\dfrac{1}{2}}}\left[ 3{{x}^{2}}+2x-3 \right]+\dfrac{\left( {{x}^{3}}+{{x}^{2}}-3x \right)}{2{{x}^{\dfrac{1}{2}}}} \\
& \dfrac{dy}{dx}=\dfrac{2{{x}^{\dfrac{1}{2}}}{{x}^{\dfrac{1}{2}}}\left( 3{{x}^{2}}+2x-3 \right)+\left( {{x}^{3}}+{{x}^{2}}-3x \right)}{2{{x}^{\dfrac{1}{2}}}} \\
& \\
& \dfrac{dy}{dx}=\dfrac{2x\left( 3{{x}^{2}}+2x-3 \right)+\left( {{x}^{3}}+{{x}^{2}}-3x \right)}{2{{x}^{\dfrac{1}{2}}}} \\
& \dfrac{dy}{dx}=\dfrac{6{{x}^{3}}+4{{x}^{2}}-6x+{{x}^{3}}+{{x}^{2}}-3x}{2\sqrt{x}} \\
& \dfrac{dy}{dx}=\dfrac{7{{x}^{3}}+5{{x}^{2}}-9x}{2\sqrt{x}} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\sqrt{2}x}\left( 7{{x}^{3}}+5{{x}^{2}}-9x \right) \\
\end{align}\]
Hence, differentiation of the given expression in the problem is given by equation.
So, option(b) is the correct answer.
Note: Another approach for the given problem would be that we can multiply the term $\sqrt{x}$ to the terms of the bracket. And hence, using $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ only, we can solve the problem as well. So, it can be another approach for the question.
Calculation is an important side of this problem. Don’t confuse with the calculation part of the problem as well.
$\dfrac{d}{dx}\left( u.v \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$
Apply this formula to get the differentiation of the equation given. Use the relation
$\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ to get the answer.
Complete step-by-step solution -
As we need to find the differentiation of $\sqrt{x}\left( {{x}^{3}}+{{x}^{2}}-3x \right)$ . So, let us suppose the given expression is represented by $'y'$ .So, we get
$y=\sqrt{x}\left( {{x}^{3}}+{{x}^{2}}-3x \right)........\left( i \right)$
As we can observe the equation(i) and get that $\sqrt{x}$ and ${{x}^{3}}+{{x}^{2}}-3x$ are in multiplication form. So, we can use multiplication rule of differentiation, which is given as
$\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}..........\left( ii \right)$
Now, we can put value of ‘u’ as $\sqrt{x}$ and ‘v’ as ${{x}^{2}}+{{x}^{2}}-3x$ and use the relation given in equation(i). So, we get
$\dfrac{d}{dx}\left( \sqrt{x}\left( {{x}^{3}}+{{x}^{2}}-3x \right) \right)=\dfrac{dy}{dx}=\sqrt{x}\dfrac{d}{dx}\left( {{x}^{3}}+{{x}^{2}}-3x \right)+\left( {{x}^{3}}+{{x}^{2}}-3x \right)\dfrac{d}{dx}\left( \sqrt{x} \right)$
Now, we know the derivative of ${{x}^{n}}$ is given as
$\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}..........\left( iii \right)$
Hence, we can get value of $\dfrac{dy}{dx}$ as
$\dfrac{dy}{dx}={{x}^{\dfrac{1}{2}}}\left[ \dfrac{d}{dx}{{x}^{3}}+\dfrac{d}{dx}{{x}^{2}}-3\dfrac{d}{dx}x \right]+\left( {{x}^{3}}+{{x}^{2}}-3x \right)\dfrac{d}{dx}\left( {{x}^{\dfrac{1}{2}}} \right)$
Now using the relation (iii), we get
$\dfrac{dy}{dx}={{x}^{\dfrac{1}{2}}}\left[ 3{{x}^{2}}+2x-3 \right]+\left( {{x}^{3}}+{{x}^{2}}-3x \right)\times \dfrac{1}{2}{{x}^{-\dfrac{1}{2}}}$
$\dfrac{dy}{dx}={{x}^{\dfrac{1}{2}}}\left[ 3{{x}^{2}}+2x-3 \right]+\left( {{x}^{3}}+{{x}^{2}}-3x \right)\times \dfrac{{{x}^{-\dfrac{1}{2}}}}{2}$
Now, we know the property of surds given as
\[\begin{align}
& {{a}^{-m}}=\dfrac{1}{{{a}^{m}}}.........\left( iv \right) \\
& {{a}^{m}}.{{a}^{n}}={{a}^{m+n}}.....\left( v \right) \\
\end{align}\]
Now, we can use above relations and hence get the value of $\dfrac{dy}{dx}$ as
\[\begin{align}
& \dfrac{dy}{dx}={{x}^{\dfrac{1}{2}}}\left[ 3{{x}^{2}}+2x-3 \right]+\left( {{x}^{3}}+{{x}^{2}}-3x \right)\times \dfrac{1}{2{{x}^{\dfrac{1}{2}}}} \\
& \dfrac{dy}{dx}={{x}^{\dfrac{1}{2}}}\left[ 3{{x}^{2}}+2x-3 \right]+\dfrac{\left( {{x}^{3}}+{{x}^{2}}-3x \right)}{2{{x}^{\dfrac{1}{2}}}} \\
& \dfrac{dy}{dx}=\dfrac{2{{x}^{\dfrac{1}{2}}}{{x}^{\dfrac{1}{2}}}\left( 3{{x}^{2}}+2x-3 \right)+\left( {{x}^{3}}+{{x}^{2}}-3x \right)}{2{{x}^{\dfrac{1}{2}}}} \\
& \\
& \dfrac{dy}{dx}=\dfrac{2x\left( 3{{x}^{2}}+2x-3 \right)+\left( {{x}^{3}}+{{x}^{2}}-3x \right)}{2{{x}^{\dfrac{1}{2}}}} \\
& \dfrac{dy}{dx}=\dfrac{6{{x}^{3}}+4{{x}^{2}}-6x+{{x}^{3}}+{{x}^{2}}-3x}{2\sqrt{x}} \\
& \dfrac{dy}{dx}=\dfrac{7{{x}^{3}}+5{{x}^{2}}-9x}{2\sqrt{x}} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\sqrt{2}x}\left( 7{{x}^{3}}+5{{x}^{2}}-9x \right) \\
\end{align}\]
Hence, differentiation of the given expression in the problem is given by equation.
So, option(b) is the correct answer.
Note: Another approach for the given problem would be that we can multiply the term $\sqrt{x}$ to the terms of the bracket. And hence, using $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ only, we can solve the problem as well. So, it can be another approach for the question.
Calculation is an important side of this problem. Don’t confuse with the calculation part of the problem as well.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

