Answer

Verified

348.6k+ views

**Hint:**For solving this question you should know about the differentiation of ${{e}^{x}}$ type functions. As we know that the differentiation of exponential functions is the same as that and the power of that will also be differentiated, so we will perform both differentiation and then finally solve it.

**Complete step-by-step solution:**

According to our question, we have to differentiate ${{e}^{3x}}$ by first principle. Derivative by first principle refers to using algebra to find a general expression for the slope of a curve. It is also known as the delta method. The derivative is a measure of the instantaneous rate of change, which is equal to:

$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$

This expression is the foundation for the rest of the differential calculus, every rule, identity and fact follows this. The general notion of rate of change of a quantity y with respect to x is the change in y divided by the change in x about the point a. This describes the average rate of change and can be expressed as:

$\dfrac{f\left( x \right)-f\left( a \right)}{x-a}$

Let us find the derivative of ${{e}^{3x}}$ with the first principle method. Therefore suppose,

$f\left( x \right)={{e}^{3x}}$

On using the first principle,

$\begin{align}

& f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\

& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{e}^{3\left( x+h \right)}}-{{e}^{3x}}}{h} \\

& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{e}^{3x}}\left( {{e}^{3h}}-1 \right)3}{3h} \\

\end{align}$

By using $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{e}^{x}}-1}{x}=1$, we get,

$f'\left( x \right)=3.{{e}^{3x}}$

**So, we get the answer as $3{{e}^{3x}}$.**

**Note:**While solving these types of questions you have to keep in mind that you should solve this from the first principle method, because it is given to do so. Otherwise we can solve it directly also without using the first principle method. You should be careful about calculations too.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Guru Purnima speech in English in 100 words class 7 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Three liquids are given to you One is hydrochloric class 11 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE