
Differentiate tan2x from first principle
[a] ${{\sec }^{2}}x$
[b] ${{\sec }^{2}}2x$
[c] $1-{{\sec }^{2}}2x$
[d] $2{{\sec }^{2}}2x$
Answer
591.9k+ views
- Hint: Use the fact that $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$. Take f(x)= cos2x and write $\tan x$ as $\dfrac{\sin x}{\cos x}$ and hence simplify the expression $\tan \left( 2x+2h \right)-\tan 2x$. Use $\sin A\cos B-\cos A\sin B=\sin \left( A-B \right)$. Use $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h}=1$. Hence find the value of the limit and hence find the derivative. Verify your answer using the chain rule of differentiation.
Complete step-by-step solution -
We know that $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
Taking f(x) = tan2x, we get
$ f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan \left( 2\left( x+h \right) \right)-\tan \left( 2x \right)}{h} $
We know that $\tan x=\dfrac{\sin x}{\cos x}$.
Hence, we have
$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{\sin \left( 2x+2h \right)}{\cos \left( 2x+2h \right)}-\dfrac{\sin 2x}{\cos 2x}}{h}$
Multiplying the numerator and the denominator by $\cos \left( 2x+2h \right)\cos 2x$, we get
$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( 2x+2h \right)\cos 2x-\sin 2x\cos \left( 2x+2h \right)}{h\cos 2x\cos \left( 2x+2h \right)}$
We know that sinAcosB-cosAsinB = sin(A-B)
Put A = 2x+2h and B = 2x, we get
$\sin \left( 2x+2h \right)\cos 2x-\cos \left( 2x+2h \right)\sin 2x=\sin \left( 2x+2h-2x \right)=\sin 2h$
Hence, we have
$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( 2h \right)}{h\cos 2x\cos \left( 2x+2h \right)}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{\cos 2x}\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{\cos \left( 2x+2h \right)}\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin 2h}{h}$
We know that $ \underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{\cos 2x}=\dfrac{1}{\cos 2x}=\sec 2x $ (because x is independent of h) and $ \underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{\cos \left( 2x+2h \right)}=\dfrac{1}{\cos \left( 2x+0 \right)}=\sec 2x $ (because $\cos 2x\ne 0$ in the domain of tan2x).
Also, we have $ \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin 2h}{2h}=1 $
Multiplying both sides by 2, we get
$ \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin 2h}{h}=2 $
Hence, we have $f'\left( x \right)=\sec 2x\times \sec 2x\times 2=2{{\sec }^{2}}2x$
Hence the derivative of tan2x is $2{{\sec }^{2}}2x$
Hence option [d] is correct.
Note: [1] Verification using chain rule:
We know that $\dfrac{d}{dx}\left( fog\left( x \right) \right)=\dfrac{d}{d\left( g\left( x \right) \right)}f\left( g\left( x \right) \right)\dfrac{d}{dx}g\left( x \right)$
Taking f(x) = tanx and g(x) = 2x, we have fog(x) = tan2x.
Now, we have $\dfrac{d}{dx}\tan x={{\sec }^{2}}x$
Hence, we have $\dfrac{d}{d\left( g\left( x \right) \right)}\tan \left( g\left( x \right) \right)={{\sec }^{2}}\left( g\left( x \right) \right)\Rightarrow \dfrac{d}{d\left( 2x \right)}\tan \left( 2x \right)={{\sec }^{2}}2x$
We know that $\dfrac{d}{dx}2x=2\dfrac{d}{dx}x=2$
Hence, we have
$\dfrac{d}{dx}\tan \left( 2x \right)={{\sec }^{2}}2x\left( 2 \right)=2{{\sec }^{2}}2x$, which is the same as obtained above.
[2] You can also solve the above question using $\tan \left( 2x+2h \right)=\dfrac{\tan 2x+\tan 2h}{1-\tan 2x\tan 2h}$ and then simplifying and using $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan \left( h \right)}{h}=1$ as shown below:
We have $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{\tan 2x+\tan 2h}{1-\tan 2x\tan 2h}-\tan 2x}{h}$
Hence, we have
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan 2x+\tan 2h-\tan 2x+{{\tan }^{2}}2x\tan 2h}{h\left( 1-\tan 2x\tan 2h \right)} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan 2h}{h}\left( 1+{{\tan }^{2}}2x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{1-\tan 2x\tan 2h} \\
& =2{{\sec }^{2}}2x \\
\end{align}$
Which is the same as obtained above.
Complete step-by-step solution -
We know that $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
Taking f(x) = tan2x, we get
$ f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan \left( 2\left( x+h \right) \right)-\tan \left( 2x \right)}{h} $
We know that $\tan x=\dfrac{\sin x}{\cos x}$.
Hence, we have
$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{\sin \left( 2x+2h \right)}{\cos \left( 2x+2h \right)}-\dfrac{\sin 2x}{\cos 2x}}{h}$
Multiplying the numerator and the denominator by $\cos \left( 2x+2h \right)\cos 2x$, we get
$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( 2x+2h \right)\cos 2x-\sin 2x\cos \left( 2x+2h \right)}{h\cos 2x\cos \left( 2x+2h \right)}$
We know that sinAcosB-cosAsinB = sin(A-B)
Put A = 2x+2h and B = 2x, we get
$\sin \left( 2x+2h \right)\cos 2x-\cos \left( 2x+2h \right)\sin 2x=\sin \left( 2x+2h-2x \right)=\sin 2h$
Hence, we have
$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( 2h \right)}{h\cos 2x\cos \left( 2x+2h \right)}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{\cos 2x}\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{\cos \left( 2x+2h \right)}\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin 2h}{h}$
We know that $ \underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{\cos 2x}=\dfrac{1}{\cos 2x}=\sec 2x $ (because x is independent of h) and $ \underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{\cos \left( 2x+2h \right)}=\dfrac{1}{\cos \left( 2x+0 \right)}=\sec 2x $ (because $\cos 2x\ne 0$ in the domain of tan2x).
Also, we have $ \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin 2h}{2h}=1 $
Multiplying both sides by 2, we get
$ \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin 2h}{h}=2 $
Hence, we have $f'\left( x \right)=\sec 2x\times \sec 2x\times 2=2{{\sec }^{2}}2x$
Hence the derivative of tan2x is $2{{\sec }^{2}}2x$
Hence option [d] is correct.
Note: [1] Verification using chain rule:
We know that $\dfrac{d}{dx}\left( fog\left( x \right) \right)=\dfrac{d}{d\left( g\left( x \right) \right)}f\left( g\left( x \right) \right)\dfrac{d}{dx}g\left( x \right)$
Taking f(x) = tanx and g(x) = 2x, we have fog(x) = tan2x.
Now, we have $\dfrac{d}{dx}\tan x={{\sec }^{2}}x$
Hence, we have $\dfrac{d}{d\left( g\left( x \right) \right)}\tan \left( g\left( x \right) \right)={{\sec }^{2}}\left( g\left( x \right) \right)\Rightarrow \dfrac{d}{d\left( 2x \right)}\tan \left( 2x \right)={{\sec }^{2}}2x$
We know that $\dfrac{d}{dx}2x=2\dfrac{d}{dx}x=2$
Hence, we have
$\dfrac{d}{dx}\tan \left( 2x \right)={{\sec }^{2}}2x\left( 2 \right)=2{{\sec }^{2}}2x$, which is the same as obtained above.
[2] You can also solve the above question using $\tan \left( 2x+2h \right)=\dfrac{\tan 2x+\tan 2h}{1-\tan 2x\tan 2h}$ and then simplifying and using $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan \left( h \right)}{h}=1$ as shown below:
We have $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{\tan 2x+\tan 2h}{1-\tan 2x\tan 2h}-\tan 2x}{h}$
Hence, we have
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan 2x+\tan 2h-\tan 2x+{{\tan }^{2}}2x\tan 2h}{h\left( 1-\tan 2x\tan 2h \right)} \\
& =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan 2h}{h}\left( 1+{{\tan }^{2}}2x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{1-\tan 2x\tan 2h} \\
& =2{{\sec }^{2}}2x \\
\end{align}$
Which is the same as obtained above.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

