
Differentiate ${{\tan }^{-1}}\dfrac{\sqrt{1+{{x}^{2}}}-1}{x}$ with respect to x.
Answer
589.2k+ views
Hint: We are going to use more than one substitution here. First we need to substitute $x=\tan \theta $ and simplify the differential as much as possible. We are going to use trigonometric ratios and formulas for sum of angles for sine and cosine as calculation requires.
Complete step by step answer:
Let us assume $x=\tan \theta $ where $\theta $ is any real number except $\dfrac{\pi }{2}+n\pi $ where $n$ is an integer.
\[\]Now we shall substitute $x=\tan \theta $ in the given differential. Let us assume
$y={{\tan }^{-1}}\dfrac{\sqrt{1+{{x}^{2}}}-1}{x}={{\tan }^{-1}}\dfrac{\sqrt{1+{{\tan }^{2}}\theta }-1}{\tan \theta }$ \[\]
Using the trigonometric formula ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$
$y={{\tan }^{-1}}\dfrac{\sqrt{1+{{x}^{2}}}-1}{x}={{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{\tan }^{2}}\theta }-1}{\tan \theta } \right)={{\tan }^{-1}}\dfrac{\sqrt{{{\sec }^{2}}\theta }-1}{\tan \theta }={{\tan }^{-1}}\left( \dfrac{\sec \theta -1}{\tan \theta } \right)$\[\]
Now we substitute the trigonometric ratio $\sec \theta =\dfrac{1}{\cos \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ ,
$y={{\tan }^{-1}}\dfrac{\dfrac{1}{\cos \theta }-1}{\dfrac{\sin \theta }{\cos \theta }}={{\tan }^{-1}}\dfrac{1-\cos \theta }{\sin \theta }$ \[\]
We know from trigonometric formula that $\cos (A+B)=\cos A\cos B-\sin A\sin B$ and $\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B$ where $A$ and $B$ are angles.
We substitute $A=B=\theta $ in the above cosine sum of angles formulas \[\]
$\begin{align}
& \cos (\theta +\theta )=\cos \theta \cos \theta -\sin \theta \sin \theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta \\
& \Rightarrow \cos (2\theta )={{\cos }^{2}}\theta -{{\sin }^{2}}\theta =1-{{\sin }^{2}}\theta -{{\sin }^{2}}\theta =1-2{{\sin }^{2}}\theta \\
& \Rightarrow 2{{\sin }^{2}}\theta =1-\cos 2\theta \\
\end{align}$ \[\]
Replacing $\theta $ with $\dfrac{\theta }{2}$ we get $2{{\sin }^{2}}\theta =1-\cos \dfrac{\theta }{2}$\[\]
Similarly we substitute $A=B=\theta $ in the above sine sum of angles formulas,
$\begin{align}
& \sin \left( \theta +\theta \right)=\sin \theta \cos \theta +\cos \theta \sin \theta =2\sin \theta \cos \theta \\
& \Rightarrow \sin 2\theta =2\sin \theta \cos \theta \\
\end{align}$\[\]
Replacing $\theta $ with $\dfrac{\theta }{2}$ we get $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ \[\]
Using the trigonometric obtained above formula $ 1-\cos \theta =2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right)$ and $\sin \theta =2\sin \left( \dfrac{\theta }{2} \right)\cos \left( \dfrac{\theta }{2} \right)$,\[y={{\tan }^{-1}}\left( \dfrac{1-\cos \theta }{\sin \theta } \right)={{\tan }^{-1}}\left( \dfrac{2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right)}{\sin \theta =2\sin \left( \dfrac{\theta }{2} \right)\cos \left( \dfrac{\theta }{2} \right)} \right)={{\tan }^{-1}}\left( \tan \dfrac{\theta }{2} \right)=\dfrac{\theta }{2}\]
Replacing $\theta $ in the above result,
\[y=\dfrac{\theta }{2}=\dfrac{{{\tan }^{-1}}x}{2}\]
Differentiating above with respect to $x$ both side,
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left( \dfrac{{{\tan }^{-1}}x}{2} \right)=\dfrac{1}{2}\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{2\left( 1+{{x}^{2}} \right)}\]
The obtained value of the derivative is \[\dfrac{1}{2\left( 1+{{x}^{2}} \right)}\].
Note: Please note that the question is ambiguous about the value of $x$ in asked derivative because if $x=0$ we cannot differentiate. We need to take care of the domain and range of the function (in this case$\tan x$) during the calculation of inverse functions because sometimes the inverse for certain values may not even exist. In this case we have discarded the value $\dfrac{\pi }{2}+n\pi $ for any $\tan x$ from further calculation as at those values $\tan x$ is not defined.
Complete step by step answer:
Let us assume $x=\tan \theta $ where $\theta $ is any real number except $\dfrac{\pi }{2}+n\pi $ where $n$ is an integer.
\[\]Now we shall substitute $x=\tan \theta $ in the given differential. Let us assume
$y={{\tan }^{-1}}\dfrac{\sqrt{1+{{x}^{2}}}-1}{x}={{\tan }^{-1}}\dfrac{\sqrt{1+{{\tan }^{2}}\theta }-1}{\tan \theta }$ \[\]
Using the trigonometric formula ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$
$y={{\tan }^{-1}}\dfrac{\sqrt{1+{{x}^{2}}}-1}{x}={{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{\tan }^{2}}\theta }-1}{\tan \theta } \right)={{\tan }^{-1}}\dfrac{\sqrt{{{\sec }^{2}}\theta }-1}{\tan \theta }={{\tan }^{-1}}\left( \dfrac{\sec \theta -1}{\tan \theta } \right)$\[\]
Now we substitute the trigonometric ratio $\sec \theta =\dfrac{1}{\cos \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ ,
$y={{\tan }^{-1}}\dfrac{\dfrac{1}{\cos \theta }-1}{\dfrac{\sin \theta }{\cos \theta }}={{\tan }^{-1}}\dfrac{1-\cos \theta }{\sin \theta }$ \[\]
We know from trigonometric formula that $\cos (A+B)=\cos A\cos B-\sin A\sin B$ and $\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B$ where $A$ and $B$ are angles.
We substitute $A=B=\theta $ in the above cosine sum of angles formulas \[\]
$\begin{align}
& \cos (\theta +\theta )=\cos \theta \cos \theta -\sin \theta \sin \theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta \\
& \Rightarrow \cos (2\theta )={{\cos }^{2}}\theta -{{\sin }^{2}}\theta =1-{{\sin }^{2}}\theta -{{\sin }^{2}}\theta =1-2{{\sin }^{2}}\theta \\
& \Rightarrow 2{{\sin }^{2}}\theta =1-\cos 2\theta \\
\end{align}$ \[\]
Replacing $\theta $ with $\dfrac{\theta }{2}$ we get $2{{\sin }^{2}}\theta =1-\cos \dfrac{\theta }{2}$\[\]
Similarly we substitute $A=B=\theta $ in the above sine sum of angles formulas,
$\begin{align}
& \sin \left( \theta +\theta \right)=\sin \theta \cos \theta +\cos \theta \sin \theta =2\sin \theta \cos \theta \\
& \Rightarrow \sin 2\theta =2\sin \theta \cos \theta \\
\end{align}$\[\]
Replacing $\theta $ with $\dfrac{\theta }{2}$ we get $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$ \[\]
Using the trigonometric obtained above formula $ 1-\cos \theta =2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right)$ and $\sin \theta =2\sin \left( \dfrac{\theta }{2} \right)\cos \left( \dfrac{\theta }{2} \right)$,\[y={{\tan }^{-1}}\left( \dfrac{1-\cos \theta }{\sin \theta } \right)={{\tan }^{-1}}\left( \dfrac{2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right)}{\sin \theta =2\sin \left( \dfrac{\theta }{2} \right)\cos \left( \dfrac{\theta }{2} \right)} \right)={{\tan }^{-1}}\left( \tan \dfrac{\theta }{2} \right)=\dfrac{\theta }{2}\]
Replacing $\theta $ in the above result,
\[y=\dfrac{\theta }{2}=\dfrac{{{\tan }^{-1}}x}{2}\]
Differentiating above with respect to $x$ both side,
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left( \dfrac{{{\tan }^{-1}}x}{2} \right)=\dfrac{1}{2}\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{2\left( 1+{{x}^{2}} \right)}\]
The obtained value of the derivative is \[\dfrac{1}{2\left( 1+{{x}^{2}} \right)}\].
Note: Please note that the question is ambiguous about the value of $x$ in asked derivative because if $x=0$ we cannot differentiate. We need to take care of the domain and range of the function (in this case$\tan x$) during the calculation of inverse functions because sometimes the inverse for certain values may not even exist. In this case we have discarded the value $\dfrac{\pi }{2}+n\pi $ for any $\tan x$ from further calculation as at those values $\tan x$ is not defined.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

