
Differentiate $ \sqrt{\sin \sqrt{x}} $ w.r.t. x.
Answer
564.6k+ views
Hint:Make use of the chain rule of derivatives for composite functions: $
\dfrac{d}{dx}f[g(x)] $ = $
\dfrac{d}{d\ g(x)}f[g(x)] $ × $ \dfrac{d}{dx}g(x) $ .
Also recall the chain rule of derivatives for change of variables: $ \dfrac{dy}{dx} $ = $ \dfrac{dy}{dt} $ × $
\dfrac{dt}{dx} $ .
Substitute $ \sqrt{x} $ = t to avoid confusion. What will be the relation between $ \dfrac{dy}{dx} $ and $
\dfrac{dy}{dt} $ after this substitution?
Recall that $ \dfrac{d}{dx}{{x}^{n}} $ = $ n{{x}^{n−1}} $ and $ \dfrac{d}{dx}\sin x $ = cos x.
Complete step by step solution:
Say the given function is y = $ \sqrt{\sin \sqrt{x}} $ .
Let's substitute $ \sqrt{x} $ = t.
On differentiating it with respect to x, we get:
$ \dfrac{d}{dx}{{x}^{\dfrac{1}{2}}} $ = $ \dfrac{d}{dx}t $
⇒ $ \dfrac{1}{2}{{x}^{\dfrac{1}{2}−1}} $ = $ \dfrac{dt}{dx} $
⇒ $ \dfrac{1}{2\sqrt{x}} $ = $ \dfrac{dt}{dx} $ ... (1)
Now, after the substitution, the given function is y = $ \sqrt{\sin t} $ . Differentiating it with respect to t, and using the chain rule, we get:
$ \dfrac{dy}{dt} $ = $ \dfrac{dy}{d(\sin t)}\sqrt{\sin t} $ × $ \dfrac{d}{dt}(\sin t) $
⇒ $ \dfrac{dy}{dt} $ = $ \dfrac{1}{2\sqrt{\sin t}} $ × cos t
Back substituting $ \sqrt{x} $ = t, we get:
⇒ $ \dfrac{dy}{dt} $ = $ \dfrac{1}{2\sqrt{\sin \sqrt{x}}} $ × $ \cos \sqrt{x} $ ... (2)
Now, using the chain rule of derivatives for change of variables, we have:
$ \dfrac{dy}{dx} $ = $ \dfrac{dy}{dt} $ × $ \dfrac{dt}{dx} $
Using the values in equations (1) and (2), we get:
⇒ $ \dfrac{dy}{dt} $ = $ \dfrac{1}{2\sqrt{\sin \sqrt{x}}} $ × $ \cos \sqrt{x} $ × $ \dfrac{2\sqrt{x}}{1} $
⇒ $ \dfrac{dy}{dt} $ = $ \dfrac{\sqrt{x}\cos \sqrt{x}}{\sqrt{\sin \sqrt{x}}} $ , which is the required derivative with respect to x.
Note:We can try differentiating without substituting also, but it will be a little bit cumbersome writing it. The product rule of derivatives: $ \dfrac{d}{dx}[f(x)g(x)] $ = $ f(x)\left[ \dfrac{d}{dx}g(x) \right] $ + $ \left[
\dfrac{d}{dx}f(x) \right]g(x) $ .
The derivatives of sin x and cos x are found using the first principle (definition) of derivatives. The first principle states that the derivative of a function f(x) is: $ \dfrac{d}{dx}f(x) $ = $ \underset{h\to
0}{\mathop{\lim }}\,\dfrac{f(x+h)−f(x)}{h} $ . The derivative of a function is the rate of change of the value of the function with respect to the change in the value of the independent variable x. The derivative of a function y = f(x) is often also denoted by y' = f'(x).
\dfrac{d}{dx}f[g(x)] $ = $
\dfrac{d}{d\ g(x)}f[g(x)] $ × $ \dfrac{d}{dx}g(x) $ .
Also recall the chain rule of derivatives for change of variables: $ \dfrac{dy}{dx} $ = $ \dfrac{dy}{dt} $ × $
\dfrac{dt}{dx} $ .
Substitute $ \sqrt{x} $ = t to avoid confusion. What will be the relation between $ \dfrac{dy}{dx} $ and $
\dfrac{dy}{dt} $ after this substitution?
Recall that $ \dfrac{d}{dx}{{x}^{n}} $ = $ n{{x}^{n−1}} $ and $ \dfrac{d}{dx}\sin x $ = cos x.
Complete step by step solution:
Say the given function is y = $ \sqrt{\sin \sqrt{x}} $ .
Let's substitute $ \sqrt{x} $ = t.
On differentiating it with respect to x, we get:
$ \dfrac{d}{dx}{{x}^{\dfrac{1}{2}}} $ = $ \dfrac{d}{dx}t $
⇒ $ \dfrac{1}{2}{{x}^{\dfrac{1}{2}−1}} $ = $ \dfrac{dt}{dx} $
⇒ $ \dfrac{1}{2\sqrt{x}} $ = $ \dfrac{dt}{dx} $ ... (1)
Now, after the substitution, the given function is y = $ \sqrt{\sin t} $ . Differentiating it with respect to t, and using the chain rule, we get:
$ \dfrac{dy}{dt} $ = $ \dfrac{dy}{d(\sin t)}\sqrt{\sin t} $ × $ \dfrac{d}{dt}(\sin t) $
⇒ $ \dfrac{dy}{dt} $ = $ \dfrac{1}{2\sqrt{\sin t}} $ × cos t
Back substituting $ \sqrt{x} $ = t, we get:
⇒ $ \dfrac{dy}{dt} $ = $ \dfrac{1}{2\sqrt{\sin \sqrt{x}}} $ × $ \cos \sqrt{x} $ ... (2)
Now, using the chain rule of derivatives for change of variables, we have:
$ \dfrac{dy}{dx} $ = $ \dfrac{dy}{dt} $ × $ \dfrac{dt}{dx} $
Using the values in equations (1) and (2), we get:
⇒ $ \dfrac{dy}{dt} $ = $ \dfrac{1}{2\sqrt{\sin \sqrt{x}}} $ × $ \cos \sqrt{x} $ × $ \dfrac{2\sqrt{x}}{1} $
⇒ $ \dfrac{dy}{dt} $ = $ \dfrac{\sqrt{x}\cos \sqrt{x}}{\sqrt{\sin \sqrt{x}}} $ , which is the required derivative with respect to x.
Note:We can try differentiating without substituting also, but it will be a little bit cumbersome writing it. The product rule of derivatives: $ \dfrac{d}{dx}[f(x)g(x)] $ = $ f(x)\left[ \dfrac{d}{dx}g(x) \right] $ + $ \left[
\dfrac{d}{dx}f(x) \right]g(x) $ .
The derivatives of sin x and cos x are found using the first principle (definition) of derivatives. The first principle states that the derivative of a function f(x) is: $ \dfrac{d}{dx}f(x) $ = $ \underset{h\to
0}{\mathop{\lim }}\,\dfrac{f(x+h)−f(x)}{h} $ . The derivative of a function is the rate of change of the value of the function with respect to the change in the value of the independent variable x. The derivative of a function y = f(x) is often also denoted by y' = f'(x).
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

