
Differentiate $\sec x$ by using first principle.
Answer
617.4k+ views
Hint- According to the first principle of differentiation, If we differentiate a function f(x) so the differentiation f’(x) represents the value of slope of a tangent on a curve. We use formula of differentiation \[f'\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f(x)}}{h}\].
Complete step-by-step solution -
Now, we have to differentiate $\sec x$ by using first principle.
Let $f\left( x \right) = \sec x$
First principal of differentiation,
\[f'\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f(x)}}{h}\]
Now, $f\left( x \right) = \sec x$ and $f\left( {x + h} \right) = \sec \left( {x + h} \right)$
Put the value of f(x) and f(x+h)
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sec \left( {x + h} \right) - \sec x}}{h} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{1}{{\cos \left( {x + h} \right)}} - \dfrac{1}{{\cos x}}} \right)} \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{{\cos x - \cos \left( {x + h} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right)} \right) \\
\]
Now using trigonometric identity, $\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{B - A}}{2}} \right)$
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{{2\sin \left( {\dfrac{{2x + h}}{2}} \right)\sin \left( {\dfrac{{x + h - x}}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right)} \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{{2\sin \left( {x + \dfrac{h}{2}} \right)\sin \left( {\dfrac{h}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right)} \right) \\
\\
\]
Now, we use $\mathop {\lim }\limits_{x \to a} f\left( a \right) \times g\left( a \right) = \mathop {\lim }\limits_{x \to a} f\left( a \right) \times \mathop {\lim }\limits_{x \to a} g\left( a \right)$ where $\mathop {\lim }\limits_{x \to a} f\left( a \right)$ give finite value.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \left( {x + \dfrac{h}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right) \times \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right)\]
We know, $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1$
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \left( {x + \dfrac{h}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right) \times 1 \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \left( {\dfrac{{\sin \left( x \right)}}{{\cos x.\cos x}}} \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x.\tan x \\
\]
So, the differentiation of $\sec x$ by using the first principle is \[\sec x.\tan x\].
Note-In such types of questions we generally face problems to solve limits so we use some important points. First we use the trigonometric identities to convert cosine into sine form because we know the most useful identity of limit is $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1$ . So, after using this property we will get the required answer.
Complete step-by-step solution -
Now, we have to differentiate $\sec x$ by using first principle.
Let $f\left( x \right) = \sec x$
First principal of differentiation,
\[f'\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f(x)}}{h}\]
Now, $f\left( x \right) = \sec x$ and $f\left( {x + h} \right) = \sec \left( {x + h} \right)$
Put the value of f(x) and f(x+h)
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sec \left( {x + h} \right) - \sec x}}{h} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{1}{{\cos \left( {x + h} \right)}} - \dfrac{1}{{\cos x}}} \right)} \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{{\cos x - \cos \left( {x + h} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right)} \right) \\
\]
Now using trigonometric identity, $\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{B - A}}{2}} \right)$
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{{2\sin \left( {\dfrac{{2x + h}}{2}} \right)\sin \left( {\dfrac{{x + h - x}}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right)} \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{{2\sin \left( {x + \dfrac{h}{2}} \right)\sin \left( {\dfrac{h}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right)} \right) \\
\\
\]
Now, we use $\mathop {\lim }\limits_{x \to a} f\left( a \right) \times g\left( a \right) = \mathop {\lim }\limits_{x \to a} f\left( a \right) \times \mathop {\lim }\limits_{x \to a} g\left( a \right)$ where $\mathop {\lim }\limits_{x \to a} f\left( a \right)$ give finite value.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \left( {x + \dfrac{h}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right) \times \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right)\]
We know, $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1$
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \left( {x + \dfrac{h}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right) \times 1 \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \left( {\dfrac{{\sin \left( x \right)}}{{\cos x.\cos x}}} \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x.\tan x \\
\]
So, the differentiation of $\sec x$ by using the first principle is \[\sec x.\tan x\].
Note-In such types of questions we generally face problems to solve limits so we use some important points. First we use the trigonometric identities to convert cosine into sine form because we know the most useful identity of limit is $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1$ . So, after using this property we will get the required answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

