
Differentiate $\sec x$ by using first principle.
Answer
600.6k+ views
Hint- According to the first principle of differentiation, If we differentiate a function f(x) so the differentiation f’(x) represents the value of slope of a tangent on a curve. We use formula of differentiation \[f'\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f(x)}}{h}\].
Complete step-by-step solution -
Now, we have to differentiate $\sec x$ by using first principle.
Let $f\left( x \right) = \sec x$
First principal of differentiation,
\[f'\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f(x)}}{h}\]
Now, $f\left( x \right) = \sec x$ and $f\left( {x + h} \right) = \sec \left( {x + h} \right)$
Put the value of f(x) and f(x+h)
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sec \left( {x + h} \right) - \sec x}}{h} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{1}{{\cos \left( {x + h} \right)}} - \dfrac{1}{{\cos x}}} \right)} \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{{\cos x - \cos \left( {x + h} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right)} \right) \\
\]
Now using trigonometric identity, $\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{B - A}}{2}} \right)$
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{{2\sin \left( {\dfrac{{2x + h}}{2}} \right)\sin \left( {\dfrac{{x + h - x}}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right)} \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{{2\sin \left( {x + \dfrac{h}{2}} \right)\sin \left( {\dfrac{h}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right)} \right) \\
\\
\]
Now, we use $\mathop {\lim }\limits_{x \to a} f\left( a \right) \times g\left( a \right) = \mathop {\lim }\limits_{x \to a} f\left( a \right) \times \mathop {\lim }\limits_{x \to a} g\left( a \right)$ where $\mathop {\lim }\limits_{x \to a} f\left( a \right)$ give finite value.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \left( {x + \dfrac{h}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right) \times \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right)\]
We know, $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1$
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \left( {x + \dfrac{h}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right) \times 1 \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \left( {\dfrac{{\sin \left( x \right)}}{{\cos x.\cos x}}} \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x.\tan x \\
\]
So, the differentiation of $\sec x$ by using the first principle is \[\sec x.\tan x\].
Note-In such types of questions we generally face problems to solve limits so we use some important points. First we use the trigonometric identities to convert cosine into sine form because we know the most useful identity of limit is $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1$ . So, after using this property we will get the required answer.
Complete step-by-step solution -
Now, we have to differentiate $\sec x$ by using first principle.
Let $f\left( x \right) = \sec x$
First principal of differentiation,
\[f'\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f(x)}}{h}\]
Now, $f\left( x \right) = \sec x$ and $f\left( {x + h} \right) = \sec \left( {x + h} \right)$
Put the value of f(x) and f(x+h)
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sec \left( {x + h} \right) - \sec x}}{h} \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{1}{{\cos \left( {x + h} \right)}} - \dfrac{1}{{\cos x}}} \right)} \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{{\cos x - \cos \left( {x + h} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right)} \right) \\
\]
Now using trigonometric identity, $\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{B - A}}{2}} \right)$
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{{2\sin \left( {\dfrac{{2x + h}}{2}} \right)\sin \left( {\dfrac{{x + h - x}}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right)} \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{{2\sin \left( {x + \dfrac{h}{2}} \right)\sin \left( {\dfrac{h}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right)} \right) \\
\\
\]
Now, we use $\mathop {\lim }\limits_{x \to a} f\left( a \right) \times g\left( a \right) = \mathop {\lim }\limits_{x \to a} f\left( a \right) \times \mathop {\lim }\limits_{x \to a} g\left( a \right)$ where $\mathop {\lim }\limits_{x \to a} f\left( a \right)$ give finite value.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \left( {x + \dfrac{h}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right) \times \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right)\]
We know, $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1$
\[
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \left( {x + \dfrac{h}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right) \times 1 \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \left( {\dfrac{{\sin \left( x \right)}}{{\cos x.\cos x}}} \right) \\
\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x.\tan x \\
\]
So, the differentiation of $\sec x$ by using the first principle is \[\sec x.\tan x\].
Note-In such types of questions we generally face problems to solve limits so we use some important points. First we use the trigonometric identities to convert cosine into sine form because we know the most useful identity of limit is $\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1$ . So, after using this property we will get the required answer.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

