
Differentiate ln(tan $ x $ ) with respect to $ {\sin ^{ - 1}}({e^x}) $ .
(A) \[\dfrac{{{e^{ - x}}\sqrt {1 - {e^{2x}}} }}{{\sin x\,\,.\,\,\cos x}}\,\]
(B) \[\dfrac{{{e^{ - x}}\sqrt {1 - {e^{2x}}} }}{{\sin x\,\,.\,\,\cot x}}\,\]
(C) \[\dfrac{{{e^{ - x}}\sqrt {1 + {e^{2x}}} }}{{\sin x\,\,.\,\,\cos x}}\,\]
(D) \[\dfrac{{{e^{ - x}}\sqrt {1 + {e^{2x}}} }}{{\sin x\,\,.\,\,\sec x}}\,\]
Answer
572.7k+ views
Hint: Whenever we need to differentiate one trigonometric function with respect to another. For this type of problem we first let one function as ‘u’ and the other function as ‘v’. Then dividing their derivative to obtain required differentiation of the functions with respect to each other.
Formulas used: $ \dfrac{d}{{dx}}\ln (A) = \dfrac{1}{A}\dfrac{d}{{dx}}(A),\,\,\,\dfrac{d}{{dx}}{\sin ^{ - 1}}A = \dfrac{1}{{\sqrt {1 - {A^2}} }}\dfrac{d}{{dx}}(A),\,\,\dfrac{d}{{dx}}\tan x = {\sec ^2}x $ and $ \dfrac{d}{{dx}}({e^x}) = {e^x} $
Complete step-by-step answer:
Consider u = $ \ln (\tan x) $ and v = $ {\sin ^{ - 1}}({e^x}) $
Now, differentiating ‘u’ with respect to x. We have,
Let \[u{\text{ }} = {\text{ ln}}\left( {tanx} \right)\]
\[
\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left\{ {\ln \left( {\tan x} \right)} \right\} \\
\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{\tan x}}.{\sec ^2}x \\
\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\cos x}}{{\sin x}}.\dfrac{1}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{\sin x.\cos x}}..................(i) \\
\]
Now, differentiating ‘v’ with respect of x. We have
$
\dfrac{{dv}}{{dx}} = \dfrac{d}{{dx}}\left\{ {{{\sin }^{ - 1}}({e^x})} \right\} \\
\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{1}{{\sqrt {1 - {{({e^x})}^2}} }}.\dfrac{d}{{dx}}({e^x})\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {\because \dfrac{d}{{dx}}{{\sin }^{ - 1}}A = \dfrac{1}{{\sqrt {1 - {A^2}} }}.\dfrac{d}{{dx}}(A)} \right\} \\
$
$
\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{1}{{\sqrt {1 - {e^{2x}}} }}({e^x}) \\
or \\
\dfrac{{dv}}{{dx}} = \dfrac{{{e^x}}}{{\sqrt {1 - {e^{2x}}} }}................................(ii) \\
$
Now, dividing equation (i) by equation (ii) we have
$
\dfrac{{\dfrac{{du}}{{dx}}}}{{\dfrac{{dv}}{{dx}}}} = \dfrac{{\dfrac{1}{{\sin x.\cos x}}}}{{\dfrac{{{e^x}}}{{\sqrt {1 - {e^{2x}}} }}}} \\
\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{{\sin x.\cos x}}.\dfrac{{\sqrt {1 - {e^{2x}}} }}{{{e^x}}} \;
$
Or we can write
$ \dfrac{{du}}{{dx}} = \dfrac{{{e^{ - x}}\sqrt {1 - {e^{2x}}} }}{{\sin x.\cos x}} $
Therefore, from above we see that derivative of function $ \ln \left( {\tan x} \right) $ with respect to the function $ {\sin ^{ - 1}}({e^x}) $ is $ \dfrac{{{e^{ - x}}\sqrt {1 - {e^{2x}}} }}{{\sin x.\cos x}} $ .
Hence, from the given four options we see that the correct option is (A).
So, the correct answer is “Option A”.
Note: For inverse trigonometric functions we can differentiate them in two ways. First we can apply direct differentiating inverse formulas or taking inverse functions as other variables and solving them in terms of other variables and finally simplifying to get its derivative.
Formulas used: $ \dfrac{d}{{dx}}\ln (A) = \dfrac{1}{A}\dfrac{d}{{dx}}(A),\,\,\,\dfrac{d}{{dx}}{\sin ^{ - 1}}A = \dfrac{1}{{\sqrt {1 - {A^2}} }}\dfrac{d}{{dx}}(A),\,\,\dfrac{d}{{dx}}\tan x = {\sec ^2}x $ and $ \dfrac{d}{{dx}}({e^x}) = {e^x} $
Complete step-by-step answer:
Consider u = $ \ln (\tan x) $ and v = $ {\sin ^{ - 1}}({e^x}) $
Now, differentiating ‘u’ with respect to x. We have,
Let \[u{\text{ }} = {\text{ ln}}\left( {tanx} \right)\]
\[
\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left\{ {\ln \left( {\tan x} \right)} \right\} \\
\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{\tan x}}.{\sec ^2}x \\
\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\cos x}}{{\sin x}}.\dfrac{1}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{\sin x.\cos x}}..................(i) \\
\]
Now, differentiating ‘v’ with respect of x. We have
$
\dfrac{{dv}}{{dx}} = \dfrac{d}{{dx}}\left\{ {{{\sin }^{ - 1}}({e^x})} \right\} \\
\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{1}{{\sqrt {1 - {{({e^x})}^2}} }}.\dfrac{d}{{dx}}({e^x})\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {\because \dfrac{d}{{dx}}{{\sin }^{ - 1}}A = \dfrac{1}{{\sqrt {1 - {A^2}} }}.\dfrac{d}{{dx}}(A)} \right\} \\
$
$
\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{1}{{\sqrt {1 - {e^{2x}}} }}({e^x}) \\
or \\
\dfrac{{dv}}{{dx}} = \dfrac{{{e^x}}}{{\sqrt {1 - {e^{2x}}} }}................................(ii) \\
$
Now, dividing equation (i) by equation (ii) we have
$
\dfrac{{\dfrac{{du}}{{dx}}}}{{\dfrac{{dv}}{{dx}}}} = \dfrac{{\dfrac{1}{{\sin x.\cos x}}}}{{\dfrac{{{e^x}}}{{\sqrt {1 - {e^{2x}}} }}}} \\
\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{{\sin x.\cos x}}.\dfrac{{\sqrt {1 - {e^{2x}}} }}{{{e^x}}} \;
$
Or we can write
$ \dfrac{{du}}{{dx}} = \dfrac{{{e^{ - x}}\sqrt {1 - {e^{2x}}} }}{{\sin x.\cos x}} $
Therefore, from above we see that derivative of function $ \ln \left( {\tan x} \right) $ with respect to the function $ {\sin ^{ - 1}}({e^x}) $ is $ \dfrac{{{e^{ - x}}\sqrt {1 - {e^{2x}}} }}{{\sin x.\cos x}} $ .
Hence, from the given four options we see that the correct option is (A).
So, the correct answer is “Option A”.
Note: For inverse trigonometric functions we can differentiate them in two ways. First we can apply direct differentiating inverse formulas or taking inverse functions as other variables and solving them in terms of other variables and finally simplifying to get its derivative.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

