
Differentiate ln(tan $ x $ ) with respect to $ {\sin ^{ - 1}}({e^x}) $ .
(A) \[\dfrac{{{e^{ - x}}\sqrt {1 - {e^{2x}}} }}{{\sin x\,\,.\,\,\cos x}}\,\]
(B) \[\dfrac{{{e^{ - x}}\sqrt {1 - {e^{2x}}} }}{{\sin x\,\,.\,\,\cot x}}\,\]
(C) \[\dfrac{{{e^{ - x}}\sqrt {1 + {e^{2x}}} }}{{\sin x\,\,.\,\,\cos x}}\,\]
(D) \[\dfrac{{{e^{ - x}}\sqrt {1 + {e^{2x}}} }}{{\sin x\,\,.\,\,\sec x}}\,\]
Answer
558k+ views
Hint: Whenever we need to differentiate one trigonometric function with respect to another. For this type of problem we first let one function as ‘u’ and the other function as ‘v’. Then dividing their derivative to obtain required differentiation of the functions with respect to each other.
Formulas used: $ \dfrac{d}{{dx}}\ln (A) = \dfrac{1}{A}\dfrac{d}{{dx}}(A),\,\,\,\dfrac{d}{{dx}}{\sin ^{ - 1}}A = \dfrac{1}{{\sqrt {1 - {A^2}} }}\dfrac{d}{{dx}}(A),\,\,\dfrac{d}{{dx}}\tan x = {\sec ^2}x $ and $ \dfrac{d}{{dx}}({e^x}) = {e^x} $
Complete step-by-step answer:
Consider u = $ \ln (\tan x) $ and v = $ {\sin ^{ - 1}}({e^x}) $
Now, differentiating ‘u’ with respect to x. We have,
Let \[u{\text{ }} = {\text{ ln}}\left( {tanx} \right)\]
\[
\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left\{ {\ln \left( {\tan x} \right)} \right\} \\
\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{\tan x}}.{\sec ^2}x \\
\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\cos x}}{{\sin x}}.\dfrac{1}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{\sin x.\cos x}}..................(i) \\
\]
Now, differentiating ‘v’ with respect of x. We have
$
\dfrac{{dv}}{{dx}} = \dfrac{d}{{dx}}\left\{ {{{\sin }^{ - 1}}({e^x})} \right\} \\
\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{1}{{\sqrt {1 - {{({e^x})}^2}} }}.\dfrac{d}{{dx}}({e^x})\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {\because \dfrac{d}{{dx}}{{\sin }^{ - 1}}A = \dfrac{1}{{\sqrt {1 - {A^2}} }}.\dfrac{d}{{dx}}(A)} \right\} \\
$
$
\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{1}{{\sqrt {1 - {e^{2x}}} }}({e^x}) \\
or \\
\dfrac{{dv}}{{dx}} = \dfrac{{{e^x}}}{{\sqrt {1 - {e^{2x}}} }}................................(ii) \\
$
Now, dividing equation (i) by equation (ii) we have
$
\dfrac{{\dfrac{{du}}{{dx}}}}{{\dfrac{{dv}}{{dx}}}} = \dfrac{{\dfrac{1}{{\sin x.\cos x}}}}{{\dfrac{{{e^x}}}{{\sqrt {1 - {e^{2x}}} }}}} \\
\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{{\sin x.\cos x}}.\dfrac{{\sqrt {1 - {e^{2x}}} }}{{{e^x}}} \;
$
Or we can write
$ \dfrac{{du}}{{dx}} = \dfrac{{{e^{ - x}}\sqrt {1 - {e^{2x}}} }}{{\sin x.\cos x}} $
Therefore, from above we see that derivative of function $ \ln \left( {\tan x} \right) $ with respect to the function $ {\sin ^{ - 1}}({e^x}) $ is $ \dfrac{{{e^{ - x}}\sqrt {1 - {e^{2x}}} }}{{\sin x.\cos x}} $ .
Hence, from the given four options we see that the correct option is (A).
So, the correct answer is “Option A”.
Note: For inverse trigonometric functions we can differentiate them in two ways. First we can apply direct differentiating inverse formulas or taking inverse functions as other variables and solving them in terms of other variables and finally simplifying to get its derivative.
Formulas used: $ \dfrac{d}{{dx}}\ln (A) = \dfrac{1}{A}\dfrac{d}{{dx}}(A),\,\,\,\dfrac{d}{{dx}}{\sin ^{ - 1}}A = \dfrac{1}{{\sqrt {1 - {A^2}} }}\dfrac{d}{{dx}}(A),\,\,\dfrac{d}{{dx}}\tan x = {\sec ^2}x $ and $ \dfrac{d}{{dx}}({e^x}) = {e^x} $
Complete step-by-step answer:
Consider u = $ \ln (\tan x) $ and v = $ {\sin ^{ - 1}}({e^x}) $
Now, differentiating ‘u’ with respect to x. We have,
Let \[u{\text{ }} = {\text{ ln}}\left( {tanx} \right)\]
\[
\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left\{ {\ln \left( {\tan x} \right)} \right\} \\
\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{\tan x}}.{\sec ^2}x \\
\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\cos x}}{{\sin x}}.\dfrac{1}{{{{\cos }^2}x}} \\
\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{{\sin x.\cos x}}..................(i) \\
\]
Now, differentiating ‘v’ with respect of x. We have
$
\dfrac{{dv}}{{dx}} = \dfrac{d}{{dx}}\left\{ {{{\sin }^{ - 1}}({e^x})} \right\} \\
\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{1}{{\sqrt {1 - {{({e^x})}^2}} }}.\dfrac{d}{{dx}}({e^x})\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\{ {\because \dfrac{d}{{dx}}{{\sin }^{ - 1}}A = \dfrac{1}{{\sqrt {1 - {A^2}} }}.\dfrac{d}{{dx}}(A)} \right\} \\
$
$
\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{1}{{\sqrt {1 - {e^{2x}}} }}({e^x}) \\
or \\
\dfrac{{dv}}{{dx}} = \dfrac{{{e^x}}}{{\sqrt {1 - {e^{2x}}} }}................................(ii) \\
$
Now, dividing equation (i) by equation (ii) we have
$
\dfrac{{\dfrac{{du}}{{dx}}}}{{\dfrac{{dv}}{{dx}}}} = \dfrac{{\dfrac{1}{{\sin x.\cos x}}}}{{\dfrac{{{e^x}}}{{\sqrt {1 - {e^{2x}}} }}}} \\
\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{{\sin x.\cos x}}.\dfrac{{\sqrt {1 - {e^{2x}}} }}{{{e^x}}} \;
$
Or we can write
$ \dfrac{{du}}{{dx}} = \dfrac{{{e^{ - x}}\sqrt {1 - {e^{2x}}} }}{{\sin x.\cos x}} $
Therefore, from above we see that derivative of function $ \ln \left( {\tan x} \right) $ with respect to the function $ {\sin ^{ - 1}}({e^x}) $ is $ \dfrac{{{e^{ - x}}\sqrt {1 - {e^{2x}}} }}{{\sin x.\cos x}} $ .
Hence, from the given four options we see that the correct option is (A).
So, the correct answer is “Option A”.
Note: For inverse trigonometric functions we can differentiate them in two ways. First we can apply direct differentiating inverse formulas or taking inverse functions as other variables and solving them in terms of other variables and finally simplifying to get its derivative.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

