
Differentiate \[\left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right)\]in three ways mentioned below,
(i) By using product rule
(ii) By expanding the product to obtain a single polynomial
(iii) By logarithmic differentiation
Do they all give the same answer?
Answer
585.9k+ views
Hint: To solve the question at first we consider the two polynomials given in the question as separate functions that means \[f(x)=\left( {{x}^{2}}-5x+8 \right)\]and\[g(x)=\left( {{x}^{3}}+7x+9 \right)\].
Then we use the product rule of differentiation of two functions that is\[\dfrac{d}{dx}\left\{ f(x)\cdot g(x) \right\}=f(x)\dfrac{d}{dx}\left\{ g(x) \right\}+g(x)\dfrac{d}{dx}\left\{ f(x) \right\}\]. Then we have to expand the product of the given expression in terms of single polynomial and differentiate separate terms using the differentiation rule\[\dfrac{d}{dx}\left( u+v+w+.......... \right)=\dfrac{du}{dx}+\dfrac{dv}{dx}+\dfrac{dw}{dx}+........\]. Finally consider the whole expression as \[h(x)=\left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right)\]and we have to take logarithm with base e on both the sides and separating the RHS using logarithmic formula\[{{\log }_{e}}\left( ab \right)={{\log }_{e}}a+{{\log }_{e}}b\], differentiate it. Then we have to match the obtained answers to check if the answers are the same or not.
Complete step-by-step answer:
Let’s consider
\[f(x)=\left( {{x}^{2}}-5x+8 \right)\]………………………….. (1)
And \[g(x)=\left( {{x}^{3}}+7x+9 \right)\]…………………………. (2)
(i) Differentiation by using product rule
We know the product rule for the differentiation which is given by,
\[\dfrac{d}{dx}\left\{ f(x)\cdot g(x) \right\}=f(x)\dfrac{d}{dx}\left\{ g(x) \right\}+g(x)\dfrac{d}{dx}\left\{ f(x) \right\}\] ………………….. (3)
Then applying the rule we can write \[\dfrac{d}{dx}\left\{ \left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right) \right\}=\left( {{x}^{2}}-5x+8 \right)\dfrac{d}{dx}\left( {{x}^{3}}+7x+9 \right)+\left( {{x}^{3}}+7x+9 \right)\dfrac{d}{dx}\left( {{x}^{2}}-5x+8 \right)\]
\[=\left( {{x}^{2}}-5x+8 \right)\left\{ \dfrac{d}{dx}\left( {{x}^{3}} \right)+\dfrac{d}{dx}\left( 7x \right)+\dfrac{d}{dx}\left( 9 \right) \right\}+\left( {{x}^{3}}+7x+9 \right)\left\{ \dfrac{d}{dx}\left( {{x}^{2}} \right)-\dfrac{d}{dx}\left( 5x \right)+\dfrac{d}{dx}\left( 8 \right) \right\}\]
\[=\left( {{x}^{2}}-5x+8 \right)\left( 3{{x}^{2}}+7+0 \right)+\left( {{x}^{3}}+7x+9 \right)\left( 2x-5+0 \right)\]
\[=3{{x}^{4}}+7{{x}^{2}}-15{{x}^{3}}-35x+24{{x}^{2}}+56+2{{x}^{4}}-5{{x}^{3}}+14{{x}^{2}}-35x+18x-45\]
\[=5{{x}^{4}}-20{{x}^{3}}+45{{x}^{2}}-52x+9\]
(ii) Differentiation by expanding the product to obtain a single polynomial
Now let’s find out the product\[\left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right)\]
\[\left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right)={{x}^{5}}+7{{x}^{3}}+9{{x}^{2}}-5{{x}^{4}}-35{{x}^{2}}-45x+8{{x}^{3}}+56x+72\]
\[={{x}^{5}}-5{{x}^{4}}+15{{x}^{3}}-26{{x}^{2}}+9x+72\]……………..(4)
Differentiating both the sides of eq. (4) with respect to x, we will get,
\[\dfrac{d}{dx}\left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right)=\dfrac{d}{dx}\left( {{x}^{5}}-5{{x}^{4}}+15{{x}^{3}}-26{{x}^{2}}+9x+72 \right)\]
\[=\dfrac{d}{dx}\left( {{x}^{5}} \right)-\dfrac{d}{dx}\left( 5{{x}^{4}} \right)+\dfrac{d}{dx}\left( 15{{x}^{3}} \right)-\dfrac{d}{dx}\left( 26{{x}^{2}} \right)+\dfrac{d}{dx}\left( 9x \right)+\dfrac{d}{dx}\left( 72 \right)\]
\[=5{{x}^{4}}-20{{x}^{3}}+45{{x}^{2}}-52x+9\]………………….. (5)
(iii) Differentiation By logarithmic differentiation
Consider \[h(x)=\left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right)\]……………… (6)
Now taking take logarithm with base e on both the sides of eq. (6), we will get,
\[{{\log }_{e}}h(x)={{\log }_{e}}\left\{ \left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right) \right\}\]
\[={{\log }_{e}}\left( {{x}^{2}}-5x+8 \right)+{{\log }_{e}}\left( {{x}^{3}}+7x+9 \right)\]…………………………………… (7)
Differentiating both the sides of eq. (8) with respect to x, we will get,
\[\Rightarrow \dfrac{d}{dx}\left\{ {{\log }_{e}}h(x) \right\}=\dfrac{d}{dx}\left\{ {{\log }_{e}}\left( {{x}^{2}}-5x+8 \right)+{{\log }_{e}}\left( {{x}^{3}}+7x+9 \right) \right\}\]
\[\Rightarrow \dfrac{1}{h(x)}\dfrac{d}{dx}\left\{ h(x) \right\}=\dfrac{1}{\left( {{x}^{2}}-5x+8 \right)}\dfrac{d}{dx}\left( {{x}^{2}}-5x+8 \right)+\dfrac{1}{\left( {{x}^{3}}+7x+9 \right)}\dfrac{d}{dx}\left( {{x}^{3}}+7x+9 \right)\]
\[\Rightarrow \dfrac{d}{dx}\left\{ h(x) \right\}=\dfrac{h(x)}{\left( {{x}^{2}}-5x+8 \right)}\left( 2x-5 \right)+\dfrac{h(x)}{\left( {{x}^{3}}+7x+9 \right)}\left( 3{{x}^{2}}+7 \right)\]…………………………….. (8)
Substituting the value of h(x) from eq. (6) in eq. (8), we will get,
\[\Rightarrow \dfrac{d}{dx}\left\{ \left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right) \right\}=\left( {{x}^{3}}+7x+9 \right)\left( 2x-5 \right)+\left( {{x}^{2}}-5x+8 \right)\left( 3{{x}^{2}}+7 \right)\]
\[=2{{x}^{4}}-5{{x}^{3}}+14{{x}^{2}}-35x+18x-45+3{{x}^{4}}+7{{x}^{2}}-15{{x}^{3}}-35x+24{{x}^{2}}+56\]
On solving, we get
\[\Rightarrow \dfrac{d}{dx}\left\{ \left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right) \right\}=5{{x}^{4}}-20{{x}^{3}}+45{{x}^{2}}-52x+9\]
Here differentiating in the three ways mentioned we get the same answer.
Note: Differentiation of an exponent is given by\[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]. Differentiation of a logarithmic function is given by\[\dfrac{d}{dx}\left( {{\log }_{e}}u \right)=\dfrac{1}{u}\dfrac{du}{dx}\]. Try not to make any calculation mistakes while solving the question and while doing differentiation, do differentiation carefully and systematically.
Then we use the product rule of differentiation of two functions that is\[\dfrac{d}{dx}\left\{ f(x)\cdot g(x) \right\}=f(x)\dfrac{d}{dx}\left\{ g(x) \right\}+g(x)\dfrac{d}{dx}\left\{ f(x) \right\}\]. Then we have to expand the product of the given expression in terms of single polynomial and differentiate separate terms using the differentiation rule\[\dfrac{d}{dx}\left( u+v+w+.......... \right)=\dfrac{du}{dx}+\dfrac{dv}{dx}+\dfrac{dw}{dx}+........\]. Finally consider the whole expression as \[h(x)=\left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right)\]and we have to take logarithm with base e on both the sides and separating the RHS using logarithmic formula\[{{\log }_{e}}\left( ab \right)={{\log }_{e}}a+{{\log }_{e}}b\], differentiate it. Then we have to match the obtained answers to check if the answers are the same or not.
Complete step-by-step answer:
Let’s consider
\[f(x)=\left( {{x}^{2}}-5x+8 \right)\]………………………….. (1)
And \[g(x)=\left( {{x}^{3}}+7x+9 \right)\]…………………………. (2)
(i) Differentiation by using product rule
We know the product rule for the differentiation which is given by,
\[\dfrac{d}{dx}\left\{ f(x)\cdot g(x) \right\}=f(x)\dfrac{d}{dx}\left\{ g(x) \right\}+g(x)\dfrac{d}{dx}\left\{ f(x) \right\}\] ………………….. (3)
Then applying the rule we can write \[\dfrac{d}{dx}\left\{ \left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right) \right\}=\left( {{x}^{2}}-5x+8 \right)\dfrac{d}{dx}\left( {{x}^{3}}+7x+9 \right)+\left( {{x}^{3}}+7x+9 \right)\dfrac{d}{dx}\left( {{x}^{2}}-5x+8 \right)\]
\[=\left( {{x}^{2}}-5x+8 \right)\left\{ \dfrac{d}{dx}\left( {{x}^{3}} \right)+\dfrac{d}{dx}\left( 7x \right)+\dfrac{d}{dx}\left( 9 \right) \right\}+\left( {{x}^{3}}+7x+9 \right)\left\{ \dfrac{d}{dx}\left( {{x}^{2}} \right)-\dfrac{d}{dx}\left( 5x \right)+\dfrac{d}{dx}\left( 8 \right) \right\}\]
\[=\left( {{x}^{2}}-5x+8 \right)\left( 3{{x}^{2}}+7+0 \right)+\left( {{x}^{3}}+7x+9 \right)\left( 2x-5+0 \right)\]
\[=3{{x}^{4}}+7{{x}^{2}}-15{{x}^{3}}-35x+24{{x}^{2}}+56+2{{x}^{4}}-5{{x}^{3}}+14{{x}^{2}}-35x+18x-45\]
\[=5{{x}^{4}}-20{{x}^{3}}+45{{x}^{2}}-52x+9\]
(ii) Differentiation by expanding the product to obtain a single polynomial
Now let’s find out the product\[\left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right)\]
\[\left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right)={{x}^{5}}+7{{x}^{3}}+9{{x}^{2}}-5{{x}^{4}}-35{{x}^{2}}-45x+8{{x}^{3}}+56x+72\]
\[={{x}^{5}}-5{{x}^{4}}+15{{x}^{3}}-26{{x}^{2}}+9x+72\]……………..(4)
Differentiating both the sides of eq. (4) with respect to x, we will get,
\[\dfrac{d}{dx}\left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right)=\dfrac{d}{dx}\left( {{x}^{5}}-5{{x}^{4}}+15{{x}^{3}}-26{{x}^{2}}+9x+72 \right)\]
\[=\dfrac{d}{dx}\left( {{x}^{5}} \right)-\dfrac{d}{dx}\left( 5{{x}^{4}} \right)+\dfrac{d}{dx}\left( 15{{x}^{3}} \right)-\dfrac{d}{dx}\left( 26{{x}^{2}} \right)+\dfrac{d}{dx}\left( 9x \right)+\dfrac{d}{dx}\left( 72 \right)\]
\[=5{{x}^{4}}-20{{x}^{3}}+45{{x}^{2}}-52x+9\]………………….. (5)
(iii) Differentiation By logarithmic differentiation
Consider \[h(x)=\left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right)\]……………… (6)
Now taking take logarithm with base e on both the sides of eq. (6), we will get,
\[{{\log }_{e}}h(x)={{\log }_{e}}\left\{ \left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right) \right\}\]
\[={{\log }_{e}}\left( {{x}^{2}}-5x+8 \right)+{{\log }_{e}}\left( {{x}^{3}}+7x+9 \right)\]…………………………………… (7)
Differentiating both the sides of eq. (8) with respect to x, we will get,
\[\Rightarrow \dfrac{d}{dx}\left\{ {{\log }_{e}}h(x) \right\}=\dfrac{d}{dx}\left\{ {{\log }_{e}}\left( {{x}^{2}}-5x+8 \right)+{{\log }_{e}}\left( {{x}^{3}}+7x+9 \right) \right\}\]
\[\Rightarrow \dfrac{1}{h(x)}\dfrac{d}{dx}\left\{ h(x) \right\}=\dfrac{1}{\left( {{x}^{2}}-5x+8 \right)}\dfrac{d}{dx}\left( {{x}^{2}}-5x+8 \right)+\dfrac{1}{\left( {{x}^{3}}+7x+9 \right)}\dfrac{d}{dx}\left( {{x}^{3}}+7x+9 \right)\]
\[\Rightarrow \dfrac{d}{dx}\left\{ h(x) \right\}=\dfrac{h(x)}{\left( {{x}^{2}}-5x+8 \right)}\left( 2x-5 \right)+\dfrac{h(x)}{\left( {{x}^{3}}+7x+9 \right)}\left( 3{{x}^{2}}+7 \right)\]…………………………….. (8)
Substituting the value of h(x) from eq. (6) in eq. (8), we will get,
\[\Rightarrow \dfrac{d}{dx}\left\{ \left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right) \right\}=\left( {{x}^{3}}+7x+9 \right)\left( 2x-5 \right)+\left( {{x}^{2}}-5x+8 \right)\left( 3{{x}^{2}}+7 \right)\]
\[=2{{x}^{4}}-5{{x}^{3}}+14{{x}^{2}}-35x+18x-45+3{{x}^{4}}+7{{x}^{2}}-15{{x}^{3}}-35x+24{{x}^{2}}+56\]
On solving, we get
\[\Rightarrow \dfrac{d}{dx}\left\{ \left( {{x}^{2}}-5x+8 \right)\left( {{x}^{3}}+7x+9 \right) \right\}=5{{x}^{4}}-20{{x}^{3}}+45{{x}^{2}}-52x+9\]
Here differentiating in the three ways mentioned we get the same answer.
Note: Differentiation of an exponent is given by\[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\]. Differentiation of a logarithmic function is given by\[\dfrac{d}{dx}\left( {{\log }_{e}}u \right)=\dfrac{1}{u}\dfrac{du}{dx}\]. Try not to make any calculation mistakes while solving the question and while doing differentiation, do differentiation carefully and systematically.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

