
How do you differentiate \[{{\left( \ln x \right)}^{\tan x}}\]?
Answer
548.1k+ views
Hint: The given function is of the form \[{{\left( f(x) \right)}^{g(x)}}\]. We can’t differentiate these types of functions directly. We will need to make some changes to the function before differentiating it. We should know the derivative of the function \[\ln x\] is \[\dfrac{1}{x}\]. Also, the derivative of the function \[\tan x\] is \[{{\sec }^{2}}x\].
Complete step by step answer:
Let \[y={{\left( \ln x \right)}^{\tan x}}\]. Taking log on both sides of the function, we get \[\ln y=\ln \left( {{\left( \ln x \right)}^{\tan x}} \right)\]. We can simplify this expression as \[y=\tan x\ln \left( \ln x \right)\].
Differentiating both sides of this function, we get
\[\dfrac{d\left( \ln y \right)}{dx}=\dfrac{d\left( \tan x\ln \left( \ln x \right) \right)}{dx}\]
We know that the derivative of \[\ln x\] is \[\dfrac{1}{x}\], hence
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{d\left( \tan x\ln \left( \ln x \right) \right)}{dx}\]
Using product rule in the above expression, we can evaluate it as
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{d\left( \tan x \right)}{dx}\ln \left( \ln x \right)+\tan x\dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}\]
The derivative of \[\tan x\] is \[{{\sec }^{2}}x\], substituting it in the above equation, we get
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}={{\sec }^{2}}x\ln \left( \ln x \right)+\tan x\dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}\]
As \[\ln \left( \ln x \right)\] is a composite function of the form \[f\left( g(x) \right)\]. The composite functions are functions of the form \[f\left( g(x) \right)\], their derivative is evaluated as, \[\dfrac{d\left( f\left( g(x) \right) \right)}{dx}=\dfrac{d\left( f\left( g(x) \right) \right)}{d\left( g(x) \right)}\dfrac{d\left( g(x) \right)}{dx}\].
Thus, \[\dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}=\dfrac{d\left( \ln \left( \ln x \right) \right)}{d\left( \ln x \right)}\dfrac{d\left( \ln x \right)}{dx}\]. Substituting the values of derivative, we get
\[\begin{align}
& \Rightarrow \dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}=\dfrac{d\left( \ln \left( \ln x \right) \right)}{d\left( \ln x \right)}\dfrac{d\left( \ln x \right)}{dx} \\
& \Rightarrow \dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}=\dfrac{1}{\ln x}\dfrac{1}{x}=\dfrac{1}{x\ln x} \\
\end{align}\]
substituting this expression in the derivative of the required function, we get
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}={{\sec }^{2}}x\ln \left( \ln x \right)+\tan x\dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}\]
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}={{\sec }^{2}}x\ln \left( \ln x \right)+\tan x\dfrac{1}{x\ln x}\]
Multiplying y on both sides, we get
\[\Rightarrow \dfrac{dy}{dx}=\left( {{\sec }^{2}}x\ln \left( \ln x \right)+\dfrac{\tan x}{x\ln x} \right)y\]
substituting the value of y in above expression, we get
\[\Rightarrow \dfrac{dy}{dx}=\left( {{\sec }^{2}}x\ln \left( \ln x \right)+\dfrac{\tan x}{x\ln x} \right)\tan x\ln \left( \ln x \right)\]
Note:
This is the standard procedure to evaluate the functions of the form \[{{\left( f(x) \right)}^{g(x)}}\]. The steps are as follows,
Step 1: Take a log on both sides of equation \[y={{\left( f(x) \right)}^{g(x)}}\]. Simplify the equation as \[\ln y=g(x)\ln \left( f(x) \right)\].
Step 2: Differentiate both sides as \[\dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{d\left( g(x)\ln \left( f(x) \right) \right)}{dx}\]
Step 3: simplify the right-hand side using the product rule, and composite function derivative
Step 4: multiply both sides by y, simplify the expression.
Complete step by step answer:
Let \[y={{\left( \ln x \right)}^{\tan x}}\]. Taking log on both sides of the function, we get \[\ln y=\ln \left( {{\left( \ln x \right)}^{\tan x}} \right)\]. We can simplify this expression as \[y=\tan x\ln \left( \ln x \right)\].
Differentiating both sides of this function, we get
\[\dfrac{d\left( \ln y \right)}{dx}=\dfrac{d\left( \tan x\ln \left( \ln x \right) \right)}{dx}\]
We know that the derivative of \[\ln x\] is \[\dfrac{1}{x}\], hence
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{d\left( \tan x\ln \left( \ln x \right) \right)}{dx}\]
Using product rule in the above expression, we can evaluate it as
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{d\left( \tan x \right)}{dx}\ln \left( \ln x \right)+\tan x\dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}\]
The derivative of \[\tan x\] is \[{{\sec }^{2}}x\], substituting it in the above equation, we get
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}={{\sec }^{2}}x\ln \left( \ln x \right)+\tan x\dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}\]
As \[\ln \left( \ln x \right)\] is a composite function of the form \[f\left( g(x) \right)\]. The composite functions are functions of the form \[f\left( g(x) \right)\], their derivative is evaluated as, \[\dfrac{d\left( f\left( g(x) \right) \right)}{dx}=\dfrac{d\left( f\left( g(x) \right) \right)}{d\left( g(x) \right)}\dfrac{d\left( g(x) \right)}{dx}\].
Thus, \[\dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}=\dfrac{d\left( \ln \left( \ln x \right) \right)}{d\left( \ln x \right)}\dfrac{d\left( \ln x \right)}{dx}\]. Substituting the values of derivative, we get
\[\begin{align}
& \Rightarrow \dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}=\dfrac{d\left( \ln \left( \ln x \right) \right)}{d\left( \ln x \right)}\dfrac{d\left( \ln x \right)}{dx} \\
& \Rightarrow \dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}=\dfrac{1}{\ln x}\dfrac{1}{x}=\dfrac{1}{x\ln x} \\
\end{align}\]
substituting this expression in the derivative of the required function, we get
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}={{\sec }^{2}}x\ln \left( \ln x \right)+\tan x\dfrac{d\left( \ln \left( \ln x \right) \right)}{dx}\]
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}={{\sec }^{2}}x\ln \left( \ln x \right)+\tan x\dfrac{1}{x\ln x}\]
Multiplying y on both sides, we get
\[\Rightarrow \dfrac{dy}{dx}=\left( {{\sec }^{2}}x\ln \left( \ln x \right)+\dfrac{\tan x}{x\ln x} \right)y\]
substituting the value of y in above expression, we get
\[\Rightarrow \dfrac{dy}{dx}=\left( {{\sec }^{2}}x\ln \left( \ln x \right)+\dfrac{\tan x}{x\ln x} \right)\tan x\ln \left( \ln x \right)\]
Note:
This is the standard procedure to evaluate the functions of the form \[{{\left( f(x) \right)}^{g(x)}}\]. The steps are as follows,
Step 1: Take a log on both sides of equation \[y={{\left( f(x) \right)}^{g(x)}}\]. Simplify the equation as \[\ln y=g(x)\ln \left( f(x) \right)\].
Step 2: Differentiate both sides as \[\dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{d\left( g(x)\ln \left( f(x) \right) \right)}{dx}\]
Step 3: simplify the right-hand side using the product rule, and composite function derivative
Step 4: multiply both sides by y, simplify the expression.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

