
Differentiate: 1. \[y={{e}^{x}}\sec x-{{x}^{\dfrac{5}{3}}}\log x\]
2. \[y={{x}^{4}}+x\sqrt{x}\cos x-{{x}^{2}}{{e}^{x}}\]
3. \[y=\left( {{x}^{3}}-2 \right)\tan x-x\cos x+7{{x}^{7}}\]
4. \[y=\sin x\log x+{{e}^{x}}\cos x-{{e}^{x}}\sqrt{x}\]
Answer
512.7k+ views
Hint: In this problem, we have to differentiate the given differential equations. Here we can see that the equation is in addition and multiplication. So, we can use the formula \[\dfrac{d}{dx}\left( u+v \right)=\dfrac{du}{dx}+\dfrac{dv}{dx}\] and \[\dfrac{d}{dx}\left( uv \right)=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\] to differentiate the given equations.
Complete step by step answer:
Here we have to differentiate each of the given equations.
We can see that the equations have only addition and multiplication in it, so we can use the formulas \[\dfrac{d}{dx}\left( u+v \right)=\dfrac{du}{dx}\pm \dfrac{dv}{dx}\]…… (1), \[\dfrac{d}{dx}\left( uv \right)=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\]……. (2) for every problem.
1. \[y={{e}^{x}}\sec x-{{x}^{\dfrac{5}{3}}}\log x\]
We can now differentiate the given equation
We can now use the formula (2) in the first and the second term separately and add using the formula (1), we get
\[\Rightarrow \dfrac{dy}{dx}={{e}^{x}}\dfrac{d}{dx}\sec x+\dfrac{d}{dx}{{e}^{x}}\sec x-{{x}^{\dfrac{5}{3}}}\dfrac{d}{dx}\log x+\dfrac{d}{dx}{{x}^{\dfrac{5}{3}}}\log x\]
We can now use the differentiation formula for each term, we get
\[\Rightarrow \dfrac{dy}{dx}={{e}^{x}}\sec x\tan x+{{e}^{x}}\sec x-{{x}^{\dfrac{5}{3}}}\dfrac{1}{x}+\dfrac{5}{3}{{x}^{\dfrac{2}{3}}}\log x\]
We can now simplify the above term, we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}={{e}^{x}}\sec x\left[ \tan x+1 \right]-{{x}^{\dfrac{2}{3}}}+\dfrac{5}{3}{{x}^{\dfrac{2}{3}}}\log x \\
\end{align}\]
Therefore, the answer is \[\dfrac{dy}{dx}={{e}^{x}}\sec x\left[ \tan x+1 \right]-{{x}^{\dfrac{2}{3}}}+\dfrac{5}{3}{{x}^{\dfrac{2}{3}}}\log x\].
2. \[y={{x}^{4}}+x\sqrt{x}\cos x-{{x}^{2}}{{e}^{x}}\]
We can now differentiate the given equation
We can now use the formula (2) in the second and the third term separately and add and subtract using the formula (1), we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}{{x}^{4}}+\left( \dfrac{dx}{dx} \right)\sqrt{x}\cos x+x\cos x\left( \dfrac{d}{dx}\sqrt{x} \right)+x\sqrt{x}\left( \dfrac{d}{dx}\cos x \right)-\left[ {{x}^{2}}\dfrac{d}{dx}{{e}^{x}}+{{e}^{x}}\dfrac{d}{dx}{{x}^{2}} \right]\]
We can now use the differentiation formula for each term, we get
\[\Rightarrow \dfrac{dy}{dx}=4{{x}^{3}}+\sqrt{x}\cos x+x\cos x\dfrac{1}{2}\dfrac{1}{\sqrt{x}}+x\sqrt{x}\left( -\sin x \right)-\left[ {{x}^{2}}{{e}^{x}}+{{e}^{x}}2x \right]\]
We can now simplify the above term, we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=4{{x}^{3}}+\sqrt{x}\cos x+\sqrt{x}\cos x\dfrac{1}{2}-x\sqrt{x}\sin x-{{x}^{2}}{{e}^{x}}-2x{{e}^{x}} \\
& \Rightarrow \dfrac{dy}{dx}=4{{x}^{3}}-{{x}^{2}}{{e}^{x}}-2x{{e}^{x}}+\sqrt{x}\left( \cos x+\dfrac{1}{2}\cos x-x\sin x \right) \\
\end{align}\]
Therefore, the answer is \[\dfrac{dy}{dx}=4{{x}^{3}}-{{x}^{2}}{{e}^{x}}-2x{{e}^{x}}+\sqrt{x}\left( \cos x+\dfrac{1}{2}\cos x-x\sin x \right)\].
3. \[y=\left( {{x}^{3}}-2 \right)\tan x-x\cos x+7{{x}^{7}}\]
We can now differentiate the given equation
We can now use the formula (2) in the first and the second term separately and add using the formula (1), we get
\[\Rightarrow \dfrac{dy}{dx}={{x}^{3}}\dfrac{d}{dx}\tan x+\tan x\dfrac{d}{dx}{{x}^{3}}-\dfrac{d}{dx}2\tan x-\left[ x\dfrac{d}{dx}\cos x+\cos x\dfrac{d}{dx}x \right]+\dfrac{d}{dx}7{{x}^{7}}\]
We can now use the differentiation formula for each term, we get
\[\Rightarrow \dfrac{dy}{dx}=3{{x}^{2}}\tan x+{{x}^{3}}{{\sec }^{2}}x-2{{\sec }^{2}}x-\left[ x\left( -\sin x \right)+\cos x \right]+49{{x}^{6}}\]
We can now simplify the above term, we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=3{{x}^{2}}\tan x+{{x}^{3}}{{\sec }^{2}}x-2{{\sec }^{2}}x+x\sin x-\cos x+49{{x}^{6}} \\
& \Rightarrow \dfrac{dy}{dx}=3{{x}^{2}}\tan x+{{\sec }^{2}}x\left( {{x}^{3}}-2 \right)+x\sin x-\cos x+49{{x}^{6}} \\
\end{align}\]
Therefore, the answer is \[\dfrac{dy}{dx}=3{{x}^{2}}\tan x+{{\sec }^{2}}x\left( {{x}^{3}}-2 \right)+x\sin x-\cos x+49{{x}^{6}}\].
4. \[y=\sin x\log x+{{e}^{x}}\cos x-{{e}^{x}}\sqrt{x}\]
We can now differentiate the given equation
\[\Rightarrow \dfrac{dy}{dx}=\sin x\dfrac{d}{dx}\log x+\log x\dfrac{d}{dx}\sin x+{{e}^{x}}\dfrac{d}{dx}\cos x+\cos x\dfrac{d}{dx}{{e}^{x}}-\left[ {{e}^{x}}\dfrac{d}{dx}\sqrt{x}+\sqrt{x}\dfrac{d}{dx}{{e}^{x}} \right]\]
We can now use the differentiation formula for each term, we get
\[\Rightarrow \dfrac{dy}{dx}=\sin x\dfrac{1}{x}+\log x\left( \cos x \right)+{{e}^{x}}\left( -\sin x \right)+\cos x{{e}^{x}}-\left[ {{e}^{x}}\dfrac{1}{2}\dfrac{1}{\sqrt{x}}+{{e}^{x}}\sqrt{x} \right]\]
We can now simplify the above term, we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\sin x\left( \dfrac{1}{x} \right)+\log x\cos x+{{e}^{x}}\left( \cos x-\sin x \right)-{{e}^{x}}\left( \dfrac{1}{2\sqrt{x}}+\sqrt{x} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\sin x\left( \dfrac{1}{x} \right)+\log x\cos x+{{e}^{x}}\left( \cos x-\sin x \right)-{{e}^{x}}\left( \dfrac{1+2x}{2\sqrt{x}} \right) \\
\end{align}\]
Therefore, the answer is \[\dfrac{dy}{dx}=\sin x\left( \dfrac{1}{x} \right)+\log x\cos x+{{e}^{x}}\left( \cos x-\sin x \right)-{{e}^{x}}\left( \dfrac{1+2x}{2\sqrt{x}} \right)\].
Note: We should always remember the differentiating formulas such as \[\dfrac{d}{dx}\left( uv \right)=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\] and \[\dfrac{d}{dx}\left( u\pm v \right)=\dfrac{du}{dx}\pm \dfrac{dv}{dx}\]. We can use these formulas whenever necessary. We should also remember the formulas used for each of the terms and apply them correctly.
Complete step by step answer:
Here we have to differentiate each of the given equations.
We can see that the equations have only addition and multiplication in it, so we can use the formulas \[\dfrac{d}{dx}\left( u+v \right)=\dfrac{du}{dx}\pm \dfrac{dv}{dx}\]…… (1), \[\dfrac{d}{dx}\left( uv \right)=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\]……. (2) for every problem.
1. \[y={{e}^{x}}\sec x-{{x}^{\dfrac{5}{3}}}\log x\]
We can now differentiate the given equation
We can now use the formula (2) in the first and the second term separately and add using the formula (1), we get
\[\Rightarrow \dfrac{dy}{dx}={{e}^{x}}\dfrac{d}{dx}\sec x+\dfrac{d}{dx}{{e}^{x}}\sec x-{{x}^{\dfrac{5}{3}}}\dfrac{d}{dx}\log x+\dfrac{d}{dx}{{x}^{\dfrac{5}{3}}}\log x\]
We can now use the differentiation formula for each term, we get
\[\Rightarrow \dfrac{dy}{dx}={{e}^{x}}\sec x\tan x+{{e}^{x}}\sec x-{{x}^{\dfrac{5}{3}}}\dfrac{1}{x}+\dfrac{5}{3}{{x}^{\dfrac{2}{3}}}\log x\]
We can now simplify the above term, we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}={{e}^{x}}\sec x\left[ \tan x+1 \right]-{{x}^{\dfrac{2}{3}}}+\dfrac{5}{3}{{x}^{\dfrac{2}{3}}}\log x \\
\end{align}\]
Therefore, the answer is \[\dfrac{dy}{dx}={{e}^{x}}\sec x\left[ \tan x+1 \right]-{{x}^{\dfrac{2}{3}}}+\dfrac{5}{3}{{x}^{\dfrac{2}{3}}}\log x\].
2. \[y={{x}^{4}}+x\sqrt{x}\cos x-{{x}^{2}}{{e}^{x}}\]
We can now differentiate the given equation
We can now use the formula (2) in the second and the third term separately and add and subtract using the formula (1), we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}{{x}^{4}}+\left( \dfrac{dx}{dx} \right)\sqrt{x}\cos x+x\cos x\left( \dfrac{d}{dx}\sqrt{x} \right)+x\sqrt{x}\left( \dfrac{d}{dx}\cos x \right)-\left[ {{x}^{2}}\dfrac{d}{dx}{{e}^{x}}+{{e}^{x}}\dfrac{d}{dx}{{x}^{2}} \right]\]
We can now use the differentiation formula for each term, we get
\[\Rightarrow \dfrac{dy}{dx}=4{{x}^{3}}+\sqrt{x}\cos x+x\cos x\dfrac{1}{2}\dfrac{1}{\sqrt{x}}+x\sqrt{x}\left( -\sin x \right)-\left[ {{x}^{2}}{{e}^{x}}+{{e}^{x}}2x \right]\]
We can now simplify the above term, we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=4{{x}^{3}}+\sqrt{x}\cos x+\sqrt{x}\cos x\dfrac{1}{2}-x\sqrt{x}\sin x-{{x}^{2}}{{e}^{x}}-2x{{e}^{x}} \\
& \Rightarrow \dfrac{dy}{dx}=4{{x}^{3}}-{{x}^{2}}{{e}^{x}}-2x{{e}^{x}}+\sqrt{x}\left( \cos x+\dfrac{1}{2}\cos x-x\sin x \right) \\
\end{align}\]
Therefore, the answer is \[\dfrac{dy}{dx}=4{{x}^{3}}-{{x}^{2}}{{e}^{x}}-2x{{e}^{x}}+\sqrt{x}\left( \cos x+\dfrac{1}{2}\cos x-x\sin x \right)\].
3. \[y=\left( {{x}^{3}}-2 \right)\tan x-x\cos x+7{{x}^{7}}\]
We can now differentiate the given equation
We can now use the formula (2) in the first and the second term separately and add using the formula (1), we get
\[\Rightarrow \dfrac{dy}{dx}={{x}^{3}}\dfrac{d}{dx}\tan x+\tan x\dfrac{d}{dx}{{x}^{3}}-\dfrac{d}{dx}2\tan x-\left[ x\dfrac{d}{dx}\cos x+\cos x\dfrac{d}{dx}x \right]+\dfrac{d}{dx}7{{x}^{7}}\]
We can now use the differentiation formula for each term, we get
\[\Rightarrow \dfrac{dy}{dx}=3{{x}^{2}}\tan x+{{x}^{3}}{{\sec }^{2}}x-2{{\sec }^{2}}x-\left[ x\left( -\sin x \right)+\cos x \right]+49{{x}^{6}}\]
We can now simplify the above term, we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=3{{x}^{2}}\tan x+{{x}^{3}}{{\sec }^{2}}x-2{{\sec }^{2}}x+x\sin x-\cos x+49{{x}^{6}} \\
& \Rightarrow \dfrac{dy}{dx}=3{{x}^{2}}\tan x+{{\sec }^{2}}x\left( {{x}^{3}}-2 \right)+x\sin x-\cos x+49{{x}^{6}} \\
\end{align}\]
Therefore, the answer is \[\dfrac{dy}{dx}=3{{x}^{2}}\tan x+{{\sec }^{2}}x\left( {{x}^{3}}-2 \right)+x\sin x-\cos x+49{{x}^{6}}\].
4. \[y=\sin x\log x+{{e}^{x}}\cos x-{{e}^{x}}\sqrt{x}\]
We can now differentiate the given equation
\[\Rightarrow \dfrac{dy}{dx}=\sin x\dfrac{d}{dx}\log x+\log x\dfrac{d}{dx}\sin x+{{e}^{x}}\dfrac{d}{dx}\cos x+\cos x\dfrac{d}{dx}{{e}^{x}}-\left[ {{e}^{x}}\dfrac{d}{dx}\sqrt{x}+\sqrt{x}\dfrac{d}{dx}{{e}^{x}} \right]\]
We can now use the differentiation formula for each term, we get
\[\Rightarrow \dfrac{dy}{dx}=\sin x\dfrac{1}{x}+\log x\left( \cos x \right)+{{e}^{x}}\left( -\sin x \right)+\cos x{{e}^{x}}-\left[ {{e}^{x}}\dfrac{1}{2}\dfrac{1}{\sqrt{x}}+{{e}^{x}}\sqrt{x} \right]\]
We can now simplify the above term, we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\sin x\left( \dfrac{1}{x} \right)+\log x\cos x+{{e}^{x}}\left( \cos x-\sin x \right)-{{e}^{x}}\left( \dfrac{1}{2\sqrt{x}}+\sqrt{x} \right) \\
& \Rightarrow \dfrac{dy}{dx}=\sin x\left( \dfrac{1}{x} \right)+\log x\cos x+{{e}^{x}}\left( \cos x-\sin x \right)-{{e}^{x}}\left( \dfrac{1+2x}{2\sqrt{x}} \right) \\
\end{align}\]
Therefore, the answer is \[\dfrac{dy}{dx}=\sin x\left( \dfrac{1}{x} \right)+\log x\cos x+{{e}^{x}}\left( \cos x-\sin x \right)-{{e}^{x}}\left( \dfrac{1+2x}{2\sqrt{x}} \right)\].
Note: We should always remember the differentiating formulas such as \[\dfrac{d}{dx}\left( uv \right)=v\dfrac{du}{dx}+u\dfrac{dv}{dx}\] and \[\dfrac{d}{dx}\left( u\pm v \right)=\dfrac{du}{dx}\pm \dfrac{dv}{dx}\]. We can use these formulas whenever necessary. We should also remember the formulas used for each of the terms and apply them correctly.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

