Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

What is the difference between log and ln ?

Answer
VerifiedVerified
436.2k+ views
like imagedislike image
Hint: In the above question, we are required to point out a difference between the given two logarithmic functions with different bases. So to solve this question requires theoretical knowledge regarding the logarithmic functions and its base. A logarithm function is the inverse of an exponential function (a function in which one term is raised to the power of another term is known as an exponential function). An exponential function is of the form a=xy , so the logarithm function being the inverse of the exponential function is of the form y=logxa .

Complete step-by-step answer:
In the given problem, we have to differentiate between the two mathematical functions log and ln provided to us in the problem itself.
So, the log function is the logarithm function with base being equal to 10 . So, it can also be written as log10 to be clear and understandable.
On the other hand, the ln function is the logarithmic function with base being equal to e, where e is the Euler’s number or constant. So, it can be written as loge to be clear. This ln function is also called a natural logarithm function.
The standard base of logarithm functions is 10, that is, if we are given a function without any base like logx then we take the base as 10.
But, when we are specifically given the base of the logarithm function as e, we have to take the function as lnx .

Note: So, both the functions given to us in the question are logarithmic functions just with different bases. We should know when to use which function as it can create a misunderstanding and confusion otherwise. We should keep in mind an important rule that the base of the logarithm functions involved should be the same in all the calculations in order to apply any property of logarithm. There are several laws of the logarithm that make the calculations easier and help us evaluate the logarithm functions.