
How many diagonals does a regular pentagon have?
\[
A.{\text{ 3}} \\
B.{\text{ 4}} \\
C.{\text{ 5}} \\
D.{\text{ 6}} \\
\]
Answer
519.9k+ views
Hint: Use the relation between the number of sides of any figure and the number of diagonals of the figure to find out directly the number of diagonals. Using diagrams for finding can also be done.
Complete step-by-step answer:
Given shape is a regular pentagon. We know that a regular pentagon has 5 sides.
Also we know the relation between the number of sides and number of diagonals of the figure.
If a figure has “n” number of sides in it then the number of diagonals of the figure is given by
$ \Rightarrow {\text{ Number of diagonals}} = \dfrac{{n\left( {n - 3} \right)}}{2}$
For regular pentagon number of sides = 5.
$ \Rightarrow n = 5$
So the number of diagonals of regular pentagon is given as:
$
\Rightarrow {\text{ Number of diagonals}} = \dfrac{{n\left( {n - 3} \right)}}{2} \\
\Rightarrow {\text{ Number of diagonals}} = \dfrac{{5\left( {5 - 3} \right)}}{2} \\
= \dfrac{{5 \times 2}}{2} = 5 \\
$
Hence, the number of diagonals of a regular pentagon is 5, which is also visible from the above figure.
So, option C is the correct option.
Note: Such type of question can also be done by simply drawing the figure and visualizing the result from the figure. But this method cannot be used when the number of sides in the figure will be very large. So remembering formulas is very important for solving such problems. Also students must remember that this formula has been derived by the method of permutation and combination.
Complete step-by-step answer:
Given shape is a regular pentagon. We know that a regular pentagon has 5 sides.

Also we know the relation between the number of sides and number of diagonals of the figure.
If a figure has “n” number of sides in it then the number of diagonals of the figure is given by
$ \Rightarrow {\text{ Number of diagonals}} = \dfrac{{n\left( {n - 3} \right)}}{2}$
For regular pentagon number of sides = 5.
$ \Rightarrow n = 5$
So the number of diagonals of regular pentagon is given as:
$
\Rightarrow {\text{ Number of diagonals}} = \dfrac{{n\left( {n - 3} \right)}}{2} \\
\Rightarrow {\text{ Number of diagonals}} = \dfrac{{5\left( {5 - 3} \right)}}{2} \\
= \dfrac{{5 \times 2}}{2} = 5 \\
$
Hence, the number of diagonals of a regular pentagon is 5, which is also visible from the above figure.
So, option C is the correct option.
Note: Such type of question can also be done by simply drawing the figure and visualizing the result from the figure. But this method cannot be used when the number of sides in the figure will be very large. So remembering formulas is very important for solving such problems. Also students must remember that this formula has been derived by the method of permutation and combination.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE
