
How many diagonals does a convex quadrilateral have?
[a] 1
[b] 2
[c] 3
[d] 4
Answer
603.9k+ views
Hint: Recall that a diagonal is a line segment formed by two points of a polygon such that the points are not connected by the side of the polygon. Use the definition of a convex polygon and think how many diagonals can a convex quadrilateral have.
Complete step-by-step answer:
We know that a diagonal of a polygon is a line segment formed by joining two points of the polygon which are not connected by the side of the polygon.
A convex polygon is a polygon having the following property:
If any two points A and B are inside the polygon, then the whole line segment AB is inside the polygon. Hence a convex quadrilateral has all angles smaller than $180{}^\circ $.
ABCD is an example of a convex quadrilateral. It is clear from the picture that only the pairs of point (A, C) and (B, D) are not connected by a side.
Hence ABCD has two diagonals AC and BD.
Hence a convex quadrilateral has 2 diagonals.
Hence option [b] is correct.
Note: Alternatively, we know that the number of diagonals in a polygon of n sides is given by
$\dfrac{\left( n \right)\left( n-3 \right)}{2}$.
Put n= 4, we get
The number of diagonals in a quadrilateral $=\dfrac{4\left( 1 \right)}{2}=2$
Hence option [b] is correct.
Complete step-by-step answer:
We know that a diagonal of a polygon is a line segment formed by joining two points of the polygon which are not connected by the side of the polygon.
A convex polygon is a polygon having the following property:
If any two points A and B are inside the polygon, then the whole line segment AB is inside the polygon. Hence a convex quadrilateral has all angles smaller than $180{}^\circ $.
ABCD is an example of a convex quadrilateral. It is clear from the picture that only the pairs of point (A, C) and (B, D) are not connected by a side.
Hence ABCD has two diagonals AC and BD.
Hence a convex quadrilateral has 2 diagonals.
Hence option [b] is correct.
Note: Alternatively, we know that the number of diagonals in a polygon of n sides is given by
$\dfrac{\left( n \right)\left( n-3 \right)}{2}$.
Put n= 4, we get
The number of diagonals in a quadrilateral $=\dfrac{4\left( 1 \right)}{2}=2$
Hence option [b] is correct.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

