
$\dfrac{x}{y} = \dfrac{{\cos A}}{{\cos B}}$then $\dfrac{{x\tan A + y\tan B}}{{x + y}} = $
A) $\cot \dfrac{{A + B}}{2}$
B) $\cot \dfrac{{A - B}}{2}$
C) $\tan \dfrac{{A + B}}{2}$
D) $\tan \dfrac{{A - B}}{2}$
Answer
567.3k+ views
Hint:
We have given the value of $\dfrac{x}{y} = \dfrac{{\cos A}}{{\cos B}}$, we have to find $\dfrac{{x\tan A + y\tan B}}{{x + y}}$
For this firstly, we have to find the value of x then we have to put the value of x in the trigonometric expression. After that we have to simplify the expression. The simplification is done by converting the tan function into sin and cos function. Once a tan function is written in the sin and cos function, we will cancel out the common factor and apply a trigonometric formula. This will lead to the result.
Complete step by step solution:
We have given that $\dfrac{x}{y} = \dfrac{{\cos A}}{{\cos B}}$………………..(i)
We have to find $\dfrac{{x\tan A + y\tan B}}{{x + y}}$…………(ii)
Now firstly we have to find value of y from (i)
$y = \dfrac{{x\cos B}}{{\cos A}}$now put this value of y in the equation (ii)
$\dfrac{{x\tan A + y\tan B}}{{x + y}} = \dfrac{{x\tan A + \left( {\dfrac{{x\cos B}}{{\cos A}}} \right)\tan B}}{{x + x\dfrac{{\cos B}}{{\cos A}}}}$……………….(iii)
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
Therefore $\tan A = \dfrac{{\sin A}}{{\cos A}},\tan B = \dfrac{{\sin B}}{{\cos B}}$putting these in equation (iii)
$\dfrac{{x\tan A + y\tan B}}{{x + y}} = \dfrac{{x\dfrac{{\sin A}}{{\cos A}} + \left( {\dfrac{{x\cos B}}{{\cos A}}} \right)\dfrac{{\sin B}}{{\cos B}}}}{{x + x\dfrac{{\cos B}}{{\cos A}}}}$
Take x common from numerator and denominator and cancel them with each other. We get;
$\dfrac{{x\tan A + y\tan B}}{{x + y}} = \dfrac{{\dfrac{{\sin A}}{{\cos A}} + \left( {\dfrac{{\cos B}}{{\cos A}}} \right)\dfrac{{\sin B}}{{\cos B}}}}{{1 + \dfrac{{\cos B}}{{\cos A}}}}$
$ = \dfrac{{\dfrac{{\sin A + \sin B}}{{\cos A}}}}{{\dfrac{{\cos A + \cos B}}{{\cos A}}}} = \dfrac{{\sin A + \sin B}}{{\cos A + \cos B}}$…………………..(iv)
Now using the trigonometric formula $\sin A + \sin B = 2\sin \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}$and $\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}$
Putting these values in equation (iv)
$\dfrac{{x\tan A + y\tan B}}{{x + y}} = \dfrac{{2\sin \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}}}{{2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}}}$
$ = \dfrac{{\sin \left( {\dfrac{{A + B}}{2}} \right)}}{{\cos \left( {\dfrac{{A - B}}{2}} \right)}} = \tan \dfrac{{A + B}}{2}$
So, \[\dfrac{{x\tan A + y\tan B}}{{x + y}} = \tan \dfrac{{A + B}}{2}\]. Therefore option D is correct.
Note:
Trigonometry is the branch of mathematics that studies the relationship between side lengths and angle of triangle. Trigonometry has six functions which are sin, cos, tan, cosec, sec, and cot. Trigonometric functions are the real functions which relate an angle right angle triangle to the ratio of two sides of a triangle.
We have given the value of $\dfrac{x}{y} = \dfrac{{\cos A}}{{\cos B}}$, we have to find $\dfrac{{x\tan A + y\tan B}}{{x + y}}$
For this firstly, we have to find the value of x then we have to put the value of x in the trigonometric expression. After that we have to simplify the expression. The simplification is done by converting the tan function into sin and cos function. Once a tan function is written in the sin and cos function, we will cancel out the common factor and apply a trigonometric formula. This will lead to the result.
Complete step by step solution:
We have given that $\dfrac{x}{y} = \dfrac{{\cos A}}{{\cos B}}$………………..(i)
We have to find $\dfrac{{x\tan A + y\tan B}}{{x + y}}$…………(ii)
Now firstly we have to find value of y from (i)
$y = \dfrac{{x\cos B}}{{\cos A}}$now put this value of y in the equation (ii)
$\dfrac{{x\tan A + y\tan B}}{{x + y}} = \dfrac{{x\tan A + \left( {\dfrac{{x\cos B}}{{\cos A}}} \right)\tan B}}{{x + x\dfrac{{\cos B}}{{\cos A}}}}$……………….(iii)
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
Therefore $\tan A = \dfrac{{\sin A}}{{\cos A}},\tan B = \dfrac{{\sin B}}{{\cos B}}$putting these in equation (iii)
$\dfrac{{x\tan A + y\tan B}}{{x + y}} = \dfrac{{x\dfrac{{\sin A}}{{\cos A}} + \left( {\dfrac{{x\cos B}}{{\cos A}}} \right)\dfrac{{\sin B}}{{\cos B}}}}{{x + x\dfrac{{\cos B}}{{\cos A}}}}$
Take x common from numerator and denominator and cancel them with each other. We get;
$\dfrac{{x\tan A + y\tan B}}{{x + y}} = \dfrac{{\dfrac{{\sin A}}{{\cos A}} + \left( {\dfrac{{\cos B}}{{\cos A}}} \right)\dfrac{{\sin B}}{{\cos B}}}}{{1 + \dfrac{{\cos B}}{{\cos A}}}}$
$ = \dfrac{{\dfrac{{\sin A + \sin B}}{{\cos A}}}}{{\dfrac{{\cos A + \cos B}}{{\cos A}}}} = \dfrac{{\sin A + \sin B}}{{\cos A + \cos B}}$…………………..(iv)
Now using the trigonometric formula $\sin A + \sin B = 2\sin \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}$and $\cos A + \cos B = 2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}$
Putting these values in equation (iv)
$\dfrac{{x\tan A + y\tan B}}{{x + y}} = \dfrac{{2\sin \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}}}{{2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}}}$
$ = \dfrac{{\sin \left( {\dfrac{{A + B}}{2}} \right)}}{{\cos \left( {\dfrac{{A - B}}{2}} \right)}} = \tan \dfrac{{A + B}}{2}$
So, \[\dfrac{{x\tan A + y\tan B}}{{x + y}} = \tan \dfrac{{A + B}}{2}\]. Therefore option D is correct.
Note:
Trigonometry is the branch of mathematics that studies the relationship between side lengths and angle of triangle. Trigonometry has six functions which are sin, cos, tan, cosec, sec, and cot. Trigonometric functions are the real functions which relate an angle right angle triangle to the ratio of two sides of a triangle.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

