
$\dfrac{{\sin {\rm{A}}}}{{\sin \left( {90^\circ - {\rm{A}}} \right)}} + {\rm{\;}}\dfrac{{\cos {\rm{A}}}}{{\cos \left( {90^\circ - {\rm{A}}} \right)}} = {\rm{\;}}\sec \left( {90^\circ - {\rm{A}}} \right){\rm{cosec}}\left( {90^\circ - {\rm{A}}} \right)$
Answer
612.3k+ views
Hint: In this question we have to prove the given expression so we have to first simplify the LHS part and use the identities $\sin \left( {90^\circ - {\rm{A}}} \right) = \cos {\rm{A}}$ and $\cos \left( {90^\circ - {\rm{A}}} \right) = \sin {\rm{A}}$ and then make use of identity ${\sin ^2}{\rm{A}} + {\rm{\;}}{\cos ^2}{\rm{A}} = 1$ to get the RHS part.
Complete step-by-step answer:
We have to prove LHS = RHS
Now,
LHS = $\dfrac{{\sin {\rm{A}}}}{{\sin \left( {90^\circ - {\rm{A}}} \right)}} + {\rm{\;}}\dfrac{{\cos {\rm{A}}}}{{\cos \left( {90^\circ - {\rm{A}}} \right)}}$
As we know that, $\sin \left( {90^\circ - {\rm{A}}} \right) = \cos {\rm{A}}$ and $\cos \left( {90^\circ - {\rm{A}}} \right) = \sin {\rm{A}}$
LHS = $\dfrac{{\sin {\rm{A}}}}{{\cos {\rm{A}}}} + {\rm{\;}}\dfrac{{\cos {\rm{A}}}}{{\sin {\rm{A}}}}$
Taking LCM, we get
LHS = $\dfrac{{{{\sin }^2}{\rm{A}} + {\rm{\;}}{{\cos }^2}{\rm{A}}}}{{\sin {\rm{A}}\cos {\rm{A}}}}$
From trigonometric identity, ${\sin ^2}{\rm{A}} + {\rm{\;}}{\cos ^2}{\rm{A}} = 1$
LHS = $\dfrac{1}{{\sin {\rm{A}}\cos {\rm{A}}}} = {\rm{cosec\;A}}\sec {\rm{A}}$
As we know that $\sec \left( {90^\circ - {\rm{A}}} \right) = {\rm{cosecA}}$ and ${\rm{cosec}}\left( {90^\circ - {\rm{A}}} \right) = \sec {\rm{A}}$
LHS = $\sec \left( {90^\circ - {\rm{A}}} \right){\rm{cosec}}\left( {90^\circ - {\rm{A}}} \right)$ = RHS
Note: Whenever we face such types of questions we need to use the standard identities of trigonometry in order to get the LHS part equal to the RHS part.
Complete step-by-step answer:
We have to prove LHS = RHS
Now,
LHS = $\dfrac{{\sin {\rm{A}}}}{{\sin \left( {90^\circ - {\rm{A}}} \right)}} + {\rm{\;}}\dfrac{{\cos {\rm{A}}}}{{\cos \left( {90^\circ - {\rm{A}}} \right)}}$
As we know that, $\sin \left( {90^\circ - {\rm{A}}} \right) = \cos {\rm{A}}$ and $\cos \left( {90^\circ - {\rm{A}}} \right) = \sin {\rm{A}}$
LHS = $\dfrac{{\sin {\rm{A}}}}{{\cos {\rm{A}}}} + {\rm{\;}}\dfrac{{\cos {\rm{A}}}}{{\sin {\rm{A}}}}$
Taking LCM, we get
LHS = $\dfrac{{{{\sin }^2}{\rm{A}} + {\rm{\;}}{{\cos }^2}{\rm{A}}}}{{\sin {\rm{A}}\cos {\rm{A}}}}$
From trigonometric identity, ${\sin ^2}{\rm{A}} + {\rm{\;}}{\cos ^2}{\rm{A}} = 1$
LHS = $\dfrac{1}{{\sin {\rm{A}}\cos {\rm{A}}}} = {\rm{cosec\;A}}\sec {\rm{A}}$
As we know that $\sec \left( {90^\circ - {\rm{A}}} \right) = {\rm{cosecA}}$ and ${\rm{cosec}}\left( {90^\circ - {\rm{A}}} \right) = \sec {\rm{A}}$
LHS = $\sec \left( {90^\circ - {\rm{A}}} \right){\rm{cosec}}\left( {90^\circ - {\rm{A}}} \right)$ = RHS
Note: Whenever we face such types of questions we need to use the standard identities of trigonometry in order to get the LHS part equal to the RHS part.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

