
Determine the values of m and n so that the following system of linear equations have infinite number of solutions:
\[\begin{array}{*{35}{l}}
\left( 2m\text{ }-1 \right)x\text{ + }3y\text{ }-\text{ }5\text{ }=\text{ }0 \\
3x\text{ + }\left( n\text{ }-\text{ }1 \right)y\text{ }-\text{ }2\text{ }=\text{ }0 \\
\end{array}\]
Answer
585.3k+ views
Hint: Apply the condition applicable for infinite solutions in the system of linear equations.
So just need to solve the equations\[\dfrac{\left( 2m\text{ }-1 \right)}{3}=\dfrac{3}{\left( n\text{ }-\text{ }1 \right)}=\dfrac{5}{2}\], to get m and n.
Complete step by step solution:
In the question, we have to find the values of m and n so that the following system of linear equations has an infinite number of solutions. Now, we know that when the two equations are of the form: \[{{a}_{1}}x\text{ + }{{\text{b}}_{1}}y-{{c}_{1}}\text{ }=\text{ }0\,\,\,\,\And \,\,\,\,{{a}_{2}}x\text{ + }{{\text{b}}_{2}}y-{{c}_{2}}\text{ }=\text{ }0\,\,\], then the condition for x and y to have infinite solutions will be when we have:
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{\text{b}}_{1}}}{{{\text{b}}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\].
So here we will compare the equation \[\left( 2m\text{ }-1 \right)x\text{ + }3y\text{ }-\text{ }5\text{ }=\text{ }0\] with \[{{a}_{1}}x\text{ + }{{\text{b}}_{1}}y-{{c}_{1}}\text{ }=\text{ }0\,\] and we get: \[{{a}_{1}}=\left( 2m\text{ }-1 \right)\], \[{{b}_{1}}=3\] and \[{{c}_{1}}=5\]. Similarly, we will compare equation \[3x\text{ + }\left( n\text{ }-\text{ }1 \right)y\text{ }-\text{ }2\text{ }=\text{ }0\] with \[\,{{a}_{2}}x\text{ + }{{\text{b}}_{2}}y-{{c}_{2}}\text{ }=\text{ }0\,\,\]and we get: \[{{a}_{2}}=3\], \[{{b}_{2}}=(n-1)\] and \[{{c}_{2}}=2\]. Now we have to just apply the condition of the infinite solution and that is given as follows:
\[\begin{align}
& \Rightarrow \dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{\text{b}}_{1}}}{{{\text{b}}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}} \\
& \Rightarrow \dfrac{\left( 2m\text{ }-1 \right)}{3}=\dfrac{3}{\left( n\text{ }-\text{ }1 \right)}=\dfrac{5}{2} \\
\end{align}\]
So here we will first solve the equation \[\dfrac{\left( 2m\text{ }-1 \right)}{3}=\dfrac{5}{2}\] to get the value of m. So we have:
\[\begin{align}
& \Rightarrow \dfrac{\left( 2m\text{ }-1 \right)}{3}=\dfrac{5}{2} \\
& \Rightarrow \left( 2m\text{ }-1 \right)=\dfrac{15}{2} \\
& \Rightarrow m=\dfrac{17}{4} \\
\end{align}\]
So this gives the value of \[m=\dfrac{17}{4}\]. Next, we will solve the equation \[\dfrac{3}{\left( n\text{ }-\text{ }1 \right)}=\dfrac{5}{2}\], to get the value of n. So we will have:
\[\begin{align}
& \Rightarrow \dfrac{3}{\left( n\text{ }-\text{ }1 \right)}=\dfrac{5}{2} \\
& \Rightarrow 6=5\left( n\text{ }-\text{ }1 \right) \\
& \Rightarrow 11=5\left( n \right) \\
& \Rightarrow n=\dfrac{11}{5} \\
\end{align}\]
So from this equation we get the value \[n=\dfrac{11}{5}\]. Finally, the value of \[m=\dfrac{17}{4}\] and \[n=\dfrac{11}{5}\].
Note: The system of linear equations can be plotted using the table of values in the Cartesian plane. The overlapping lines will have infinite solutions. Whereas the set of linear equations that has the intersecting lines will have just one unique solution of x and y.
So just need to solve the equations\[\dfrac{\left( 2m\text{ }-1 \right)}{3}=\dfrac{3}{\left( n\text{ }-\text{ }1 \right)}=\dfrac{5}{2}\], to get m and n.
Complete step by step solution:
In the question, we have to find the values of m and n so that the following system of linear equations has an infinite number of solutions. Now, we know that when the two equations are of the form: \[{{a}_{1}}x\text{ + }{{\text{b}}_{1}}y-{{c}_{1}}\text{ }=\text{ }0\,\,\,\,\And \,\,\,\,{{a}_{2}}x\text{ + }{{\text{b}}_{2}}y-{{c}_{2}}\text{ }=\text{ }0\,\,\], then the condition for x and y to have infinite solutions will be when we have:
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{\text{b}}_{1}}}{{{\text{b}}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\].
So here we will compare the equation \[\left( 2m\text{ }-1 \right)x\text{ + }3y\text{ }-\text{ }5\text{ }=\text{ }0\] with \[{{a}_{1}}x\text{ + }{{\text{b}}_{1}}y-{{c}_{1}}\text{ }=\text{ }0\,\] and we get: \[{{a}_{1}}=\left( 2m\text{ }-1 \right)\], \[{{b}_{1}}=3\] and \[{{c}_{1}}=5\]. Similarly, we will compare equation \[3x\text{ + }\left( n\text{ }-\text{ }1 \right)y\text{ }-\text{ }2\text{ }=\text{ }0\] with \[\,{{a}_{2}}x\text{ + }{{\text{b}}_{2}}y-{{c}_{2}}\text{ }=\text{ }0\,\,\]and we get: \[{{a}_{2}}=3\], \[{{b}_{2}}=(n-1)\] and \[{{c}_{2}}=2\]. Now we have to just apply the condition of the infinite solution and that is given as follows:
\[\begin{align}
& \Rightarrow \dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{\text{b}}_{1}}}{{{\text{b}}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}} \\
& \Rightarrow \dfrac{\left( 2m\text{ }-1 \right)}{3}=\dfrac{3}{\left( n\text{ }-\text{ }1 \right)}=\dfrac{5}{2} \\
\end{align}\]
So here we will first solve the equation \[\dfrac{\left( 2m\text{ }-1 \right)}{3}=\dfrac{5}{2}\] to get the value of m. So we have:
\[\begin{align}
& \Rightarrow \dfrac{\left( 2m\text{ }-1 \right)}{3}=\dfrac{5}{2} \\
& \Rightarrow \left( 2m\text{ }-1 \right)=\dfrac{15}{2} \\
& \Rightarrow m=\dfrac{17}{4} \\
\end{align}\]
So this gives the value of \[m=\dfrac{17}{4}\]. Next, we will solve the equation \[\dfrac{3}{\left( n\text{ }-\text{ }1 \right)}=\dfrac{5}{2}\], to get the value of n. So we will have:
\[\begin{align}
& \Rightarrow \dfrac{3}{\left( n\text{ }-\text{ }1 \right)}=\dfrac{5}{2} \\
& \Rightarrow 6=5\left( n\text{ }-\text{ }1 \right) \\
& \Rightarrow 11=5\left( n \right) \\
& \Rightarrow n=\dfrac{11}{5} \\
\end{align}\]
So from this equation we get the value \[n=\dfrac{11}{5}\]. Finally, the value of \[m=\dfrac{17}{4}\] and \[n=\dfrac{11}{5}\].
Note: The system of linear equations can be plotted using the table of values in the Cartesian plane. The overlapping lines will have infinite solutions. Whereas the set of linear equations that has the intersecting lines will have just one unique solution of x and y.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

The time gap between two sessions of the Parliament class 10 social science CBSE

