
How do you determine If $\int\limits_{0}^{1}{\dfrac{3}{4x-1}dx}$ converges or diverges?
Answer
537.9k+ views
Hint: To determine If $\int\limits_{0}^{1}{\dfrac{3}{4x-1}dx}$ converges or diverges, we have to split the limits. We can see that the integral gets an indefinite solution when $x=\dfrac{1}{4}$ . Hence, we will split the given integral as $\int\limits_{0}^{1}{\dfrac{3}{4x-1}dx}=\int\limits_{0}^{\dfrac{1}{4}}{\dfrac{3}{4x-1}dx}+\int\limits_{\dfrac{1}{4}}^{1}{\dfrac{3}{4x-1}dx}$ . Then we have to find $\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \int\limits_{0}^{b}{\dfrac{3}{4x-1}dx} \right]$ and $\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \int\limits_{b}^{1}{\dfrac{3}{4x-1}dx} \right]$ . If the limits in each case exist or are finite, then the given integral converges. If the limits are undefined or plus or minus infinite, then the given integral diverges.
Complete step by step solution:
We have to determine If $\int\limits_{0}^{1}{\dfrac{3}{4x-1}dx}$ converges or diverges. We can see that the integral gets an indefinite solution when $x=\dfrac{1}{4}$ . Let us split the limits. We know that $\int\limits_{a}^{c}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( x \right)dx}+\int\limits_{b}^{c}{f\left( x \right)dx}$ . Hence, we can write the given integral as
$\int\limits_{0}^{1}{\dfrac{3}{4x-1}dx}=\int\limits_{0}^{\dfrac{1}{4}}{\dfrac{3}{4x-1}dx}+\int\limits_{\dfrac{1}{4}}^{1}{\dfrac{3}{4x-1}dx}...\left( i \right)$
Let us consider $\int\limits_{0}^{\dfrac{1}{4}}{\dfrac{3}{4x-1}dx}$ . We can write this integral in terms of limits as
$\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \int\limits_{0}^{b}{\dfrac{3}{4x-1}dx} \right]$
First let us integrate the given integral. Let us substitute $u=4x-1$ . Let us differentiate this equation on both the sides. We will get $du=4dx$ . We have to multiply and divide the given integral by 4.
$\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \int\limits_{0}^{n}{\dfrac{3}{4x-1}dx} \right]=\left( \dfrac{1}{4}\times 3 \right)\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \int\limits_{0}^{b}{\dfrac{4}{4x-1}dx} \right]$
We can now substitute the values of u and du in the above equation.
$\Rightarrow \dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \int\limits_{0}^{b}{\dfrac{du}{u}} \right]$
We know that $\int{\dfrac{1}{x}dx}=\log \left| x \right|+C$ . Thus the above equation becomes
$\Rightarrow \dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \log \left| u \right| \right]_{0}^{b}$
Let us now substitute the value of u. We will get
$\Rightarrow \dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \log \left| 4x-1 \right| \right]_{0}^{b}$
Now, we have to apply the intervals.
$\begin{align}
& \Rightarrow \dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \log \left| 4b-1 \right|-\log \left| 0-1 \right| \right] \\
& =\dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \log \left| 4b-1 \right|-\log \left| -1 \right| \right] \\
& =\dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \log \left| 4b-1 \right|-\log 1 \right] \\
\end{align}$
We know that $\log 1=0$ . Hence, we can write the above equation as
$\begin{align}
& \Rightarrow \dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \log \left| 4b-1 \right|-0 \right] \\
& =\dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \log \left| 4b-1 \right| \right] \\
\end{align}$
Now, we have to apply the limits. We will get
\[\begin{align}
& \Rightarrow \dfrac{3}{4}\left[ \log \left| 4\times \dfrac{1}{4}-1 \right| \right] \\
& =\dfrac{3}{4}\left[ \log \left| 1-1 \right| \right] \\
& =\dfrac{3}{4}\left[ \log \left| 0 \right| \right] \\
& =\infty \\
& \Rightarrow \displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \int\limits_{0}^{b}{\dfrac{3}{4x-1}dx} \right]=\infty ...(ii) \\
\end{align}\]
Now let us evaluate $\int\limits_{\dfrac{1}{4}}^{1}{\dfrac{3}{4x-1}dx}$ .
We can write this integral in terms of limits as
$\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \int\limits_{b}^{1}{\dfrac{3}{4x-1}dx} \right]$
On integrating similar to the previous term, we will get
$\Rightarrow \dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \log \left| 4x-1 \right| \right]_{b}^{1}$
Now, we have to apply the intervals.
$\begin{align}
& \Rightarrow \dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \log \left| 4-1 \right|-\log \left| 4b-1 \right| \right] \\
& =\dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \log \left| 3 \right|-\log \left| 4b-1 \right| \right] \\
& =\dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \log 3-\log \left| 4b-1 \right| \right] \\
\end{align}$
We know that $\log 3=0.477$ . Hence, we can write the above equation as
$\Rightarrow \dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ 0.477-\log \left| 4b-1 \right| \right]$
We know that $\displaystyle \lim_{x \to \infty }\left( a-b \right)=\displaystyle \lim_{x \to \infty }a-\displaystyle \lim_{x \to \infty }b$ and limit of a constant is constant itself. Thus, we can write the above equation as
\[\begin{align}
& \Rightarrow \dfrac{3}{4}\left\{ \displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}0.477-\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \log \left| 4b-1 \right| \right] \right\} \\
& =\dfrac{3}{4}\left\{ 0.477-\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \log \left| 4b-1 \right| \right] \right\} \\
\end{align}\]
Let us apply distributive property in the above equation.
\[\begin{align}
& \Rightarrow \dfrac{3}{4}\times 0.477-\dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \log \left| 4b-1 \right| \right] \\
& =0.357-\dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \log \left| 4b-1 \right| \right] \\
\end{align}\]
Now, we have applied the limits. We will get
\[\begin{align}
& \Rightarrow 0.357-\dfrac{3}{4}\left[ \log \left| 4\times \dfrac{1}{4}-1 \right| \right] \\
& =0.357-\dfrac{3}{4}\left[ \log \left| 1-1 \right| \right] \\
& =0.357-\dfrac{3}{4}\left[ \log \left| 0 \right| \right] \\
& =0.357-\infty \\
& =-\infty \\
& \Rightarrow \displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \int\limits_{b}^{1}{\dfrac{3}{4x-1}dx} \right]=-\infty ...\left( iii \right) \\
\end{align}\]
We can see that the limit of the integrals from (ii) and (iii) are plus and minus infinite respectively. Hence, the given integral diverges.
Note: Students must know when an integral converges and diverges. If the limits exist or are finite, then the given integral converges. If the limits are undefined or plus or minus infinite, then the given integral diverges. We can find when the given integral gets indefinite solution by equating the denominator of the given integral to 0.
\[\begin{align}
& \Rightarrow 4x-1=0 \\
& \Rightarrow 4x=1 \\
& \Rightarrow x=\dfrac{1}{4} \\
\end{align}\]
Complete step by step solution:
We have to determine If $\int\limits_{0}^{1}{\dfrac{3}{4x-1}dx}$ converges or diverges. We can see that the integral gets an indefinite solution when $x=\dfrac{1}{4}$ . Let us split the limits. We know that $\int\limits_{a}^{c}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( x \right)dx}+\int\limits_{b}^{c}{f\left( x \right)dx}$ . Hence, we can write the given integral as
$\int\limits_{0}^{1}{\dfrac{3}{4x-1}dx}=\int\limits_{0}^{\dfrac{1}{4}}{\dfrac{3}{4x-1}dx}+\int\limits_{\dfrac{1}{4}}^{1}{\dfrac{3}{4x-1}dx}...\left( i \right)$
Let us consider $\int\limits_{0}^{\dfrac{1}{4}}{\dfrac{3}{4x-1}dx}$ . We can write this integral in terms of limits as
$\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \int\limits_{0}^{b}{\dfrac{3}{4x-1}dx} \right]$
First let us integrate the given integral. Let us substitute $u=4x-1$ . Let us differentiate this equation on both the sides. We will get $du=4dx$ . We have to multiply and divide the given integral by 4.
$\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \int\limits_{0}^{n}{\dfrac{3}{4x-1}dx} \right]=\left( \dfrac{1}{4}\times 3 \right)\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \int\limits_{0}^{b}{\dfrac{4}{4x-1}dx} \right]$
We can now substitute the values of u and du in the above equation.
$\Rightarrow \dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \int\limits_{0}^{b}{\dfrac{du}{u}} \right]$
We know that $\int{\dfrac{1}{x}dx}=\log \left| x \right|+C$ . Thus the above equation becomes
$\Rightarrow \dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \log \left| u \right| \right]_{0}^{b}$
Let us now substitute the value of u. We will get
$\Rightarrow \dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \log \left| 4x-1 \right| \right]_{0}^{b}$
Now, we have to apply the intervals.
$\begin{align}
& \Rightarrow \dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \log \left| 4b-1 \right|-\log \left| 0-1 \right| \right] \\
& =\dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \log \left| 4b-1 \right|-\log \left| -1 \right| \right] \\
& =\dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \log \left| 4b-1 \right|-\log 1 \right] \\
\end{align}$
We know that $\log 1=0$ . Hence, we can write the above equation as
$\begin{align}
& \Rightarrow \dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \log \left| 4b-1 \right|-0 \right] \\
& =\dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \log \left| 4b-1 \right| \right] \\
\end{align}$
Now, we have to apply the limits. We will get
\[\begin{align}
& \Rightarrow \dfrac{3}{4}\left[ \log \left| 4\times \dfrac{1}{4}-1 \right| \right] \\
& =\dfrac{3}{4}\left[ \log \left| 1-1 \right| \right] \\
& =\dfrac{3}{4}\left[ \log \left| 0 \right| \right] \\
& =\infty \\
& \Rightarrow \displaystyle \lim_{b \to {{\dfrac{1}{4}}^{+}}}\left[ \int\limits_{0}^{b}{\dfrac{3}{4x-1}dx} \right]=\infty ...(ii) \\
\end{align}\]
Now let us evaluate $\int\limits_{\dfrac{1}{4}}^{1}{\dfrac{3}{4x-1}dx}$ .
We can write this integral in terms of limits as
$\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \int\limits_{b}^{1}{\dfrac{3}{4x-1}dx} \right]$
On integrating similar to the previous term, we will get
$\Rightarrow \dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \log \left| 4x-1 \right| \right]_{b}^{1}$
Now, we have to apply the intervals.
$\begin{align}
& \Rightarrow \dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \log \left| 4-1 \right|-\log \left| 4b-1 \right| \right] \\
& =\dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \log \left| 3 \right|-\log \left| 4b-1 \right| \right] \\
& =\dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \log 3-\log \left| 4b-1 \right| \right] \\
\end{align}$
We know that $\log 3=0.477$ . Hence, we can write the above equation as
$\Rightarrow \dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ 0.477-\log \left| 4b-1 \right| \right]$
We know that $\displaystyle \lim_{x \to \infty }\left( a-b \right)=\displaystyle \lim_{x \to \infty }a-\displaystyle \lim_{x \to \infty }b$ and limit of a constant is constant itself. Thus, we can write the above equation as
\[\begin{align}
& \Rightarrow \dfrac{3}{4}\left\{ \displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}0.477-\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \log \left| 4b-1 \right| \right] \right\} \\
& =\dfrac{3}{4}\left\{ 0.477-\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \log \left| 4b-1 \right| \right] \right\} \\
\end{align}\]
Let us apply distributive property in the above equation.
\[\begin{align}
& \Rightarrow \dfrac{3}{4}\times 0.477-\dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \log \left| 4b-1 \right| \right] \\
& =0.357-\dfrac{3}{4}\displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \log \left| 4b-1 \right| \right] \\
\end{align}\]
Now, we have applied the limits. We will get
\[\begin{align}
& \Rightarrow 0.357-\dfrac{3}{4}\left[ \log \left| 4\times \dfrac{1}{4}-1 \right| \right] \\
& =0.357-\dfrac{3}{4}\left[ \log \left| 1-1 \right| \right] \\
& =0.357-\dfrac{3}{4}\left[ \log \left| 0 \right| \right] \\
& =0.357-\infty \\
& =-\infty \\
& \Rightarrow \displaystyle \lim_{b \to {{\dfrac{1}{4}}^{-}}}\left[ \int\limits_{b}^{1}{\dfrac{3}{4x-1}dx} \right]=-\infty ...\left( iii \right) \\
\end{align}\]
We can see that the limit of the integrals from (ii) and (iii) are plus and minus infinite respectively. Hence, the given integral diverges.
Note: Students must know when an integral converges and diverges. If the limits exist or are finite, then the given integral converges. If the limits are undefined or plus or minus infinite, then the given integral diverges. We can find when the given integral gets indefinite solution by equating the denominator of the given integral to 0.
\[\begin{align}
& \Rightarrow 4x-1=0 \\
& \Rightarrow 4x=1 \\
& \Rightarrow x=\dfrac{1}{4} \\
\end{align}\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

