
Derive the expression for second order reaction with unequal concentration for a reaction $ A + B \to product $ when ( $ 1 $ ) if $ a > b $ & ( $ 2 $ ) if $ b > a $ , where “a $ mol/d{m^3} $ ” and “ b $ mol/d{m^3} $ ” are the initial concentrations of A and B respectively?
Answer
468.6k+ views
Hint: We should know about the second order reaction. It is a reaction in which the sum of the exponents in the corresponding rate law of the chemical reactions is equal to two. It depends on the concentration of both the reactants.
Complete answer:
The second order reaction is given as:
$ A + B\xrightarrow{k}products $
As we know that the rate of second order reaction is
$ r = k[A][B] $
We can also write the above equation in other forms such as
Let $ x\,\,mol/d{m^3} $ be the amount reacted in time ‘ $ t $ ’. Then the equation is written as:
$ \dfrac{{dx}}{{dt}} = k[A][B] $
Let ‘ $ a $ ’ and ‘ $ b $ ’ be the initial concentration of $ A $ and $ B $ respectively and it is given in the question that both the concentration of $ A $ and $ B $ are not equal. Mathematically, we can write as $ a \ne b $ . Then,
$ \dfrac{{dx}}{{dt}} = k(a - x)(b - x) $
Or,
$ \int\limits_0^x {\dfrac{{dx}}{{(a - x)(b - x)}} = } \int\limits_0^t {kdt} = kt $
Now, to solve this integration, we use the method of partial fraction to evaluate the first integral.
It gives that,
$ \int\limits_0^x {\dfrac{{dx}}{{(a - x)(b - x)}} = \int\limits_0^x {\dfrac{{dx}}{{(b - a)(a - x)}} + \int\limits_0^x {\dfrac{{dx}}{{(a - b)(b - x)}}} } } $
Now, we get
$ = \dfrac{1}{{b - a}}\int\limits_0^x {\dfrac{{dx}}{{(a - x)}} + \dfrac{1}{{a - b}}\int\limits_0^x {\dfrac{{dx}}{{(b - x)}}} } $
Then, we use method of u-substitution method to solve the new integrals values, we get
$ = \dfrac{1}{{b - a}}\int\limits_0^x {\dfrac{{dx}}{{(a - x)}} + \dfrac{1}{{a - b}}\int\limits_0^x {\dfrac{{dx}}{{(b - x)}}} } $
$ = \dfrac{1}{{b - a}}\ln \left( {\dfrac{a}{{a - x}}} \right) + \dfrac{1}{{a - b}}\ln \left( {\dfrac{b}{{b - x}}} \right) $
Taking $ \dfrac{1}{{b - a}} $ as common from the above equations,
$ = \dfrac{1}{{b - a}}\left( {\ln \,\left( {\dfrac{a}{{a - x}}} \right) - \ln \left( {\dfrac{b}{{b - x}}} \right)} \right) $
$ \therefore \dfrac{1}{{b - a}}\ln \left( {\dfrac{{a(b - x)}}{{b(a - x)}}} \right) = kt $
This is the integrated rate law expression.
Arranging the above equation, we get
$ \therefore \ln \left( {\dfrac{{a(b - x)}}{{b(a - x)}}} \right) = (b - a)kt $
We can write the rate law, in terms of original symbols.
$ \ln \left( {\dfrac{{{{[A]}_0}[B]}}{{{{[B]}_0}[A]}}} \right) = ({[B]_0} - {[A]_0})kt $
This rate law works for all the values of concentration in which both the concentration i.e. ‘ $ a $ ’ and ‘ $ b $ ’ of $ A $ and $ B $ respectively are not equal ( $ a \ne b $ ) whether it is $ a > b $ or $ b > a $ .
Note:
It must be remembered that the overall order of reaction is two for the second order reaction. We know that the rate for second order reaction is written as $ r = k[A][B] $ . Sometimes it is also expressed as $ r = k{[A]^2} $ when one reactant is given.
Complete answer:
The second order reaction is given as:
$ A + B\xrightarrow{k}products $
As we know that the rate of second order reaction is
$ r = k[A][B] $
We can also write the above equation in other forms such as
Let $ x\,\,mol/d{m^3} $ be the amount reacted in time ‘ $ t $ ’. Then the equation is written as:
$ \dfrac{{dx}}{{dt}} = k[A][B] $
Let ‘ $ a $ ’ and ‘ $ b $ ’ be the initial concentration of $ A $ and $ B $ respectively and it is given in the question that both the concentration of $ A $ and $ B $ are not equal. Mathematically, we can write as $ a \ne b $ . Then,
$ \dfrac{{dx}}{{dt}} = k(a - x)(b - x) $
Or,
$ \int\limits_0^x {\dfrac{{dx}}{{(a - x)(b - x)}} = } \int\limits_0^t {kdt} = kt $
Now, to solve this integration, we use the method of partial fraction to evaluate the first integral.
It gives that,
$ \int\limits_0^x {\dfrac{{dx}}{{(a - x)(b - x)}} = \int\limits_0^x {\dfrac{{dx}}{{(b - a)(a - x)}} + \int\limits_0^x {\dfrac{{dx}}{{(a - b)(b - x)}}} } } $
Now, we get
$ = \dfrac{1}{{b - a}}\int\limits_0^x {\dfrac{{dx}}{{(a - x)}} + \dfrac{1}{{a - b}}\int\limits_0^x {\dfrac{{dx}}{{(b - x)}}} } $
Then, we use method of u-substitution method to solve the new integrals values, we get
$ = \dfrac{1}{{b - a}}\int\limits_0^x {\dfrac{{dx}}{{(a - x)}} + \dfrac{1}{{a - b}}\int\limits_0^x {\dfrac{{dx}}{{(b - x)}}} } $
$ = \dfrac{1}{{b - a}}\ln \left( {\dfrac{a}{{a - x}}} \right) + \dfrac{1}{{a - b}}\ln \left( {\dfrac{b}{{b - x}}} \right) $
Taking $ \dfrac{1}{{b - a}} $ as common from the above equations,
$ = \dfrac{1}{{b - a}}\left( {\ln \,\left( {\dfrac{a}{{a - x}}} \right) - \ln \left( {\dfrac{b}{{b - x}}} \right)} \right) $
$ \therefore \dfrac{1}{{b - a}}\ln \left( {\dfrac{{a(b - x)}}{{b(a - x)}}} \right) = kt $
This is the integrated rate law expression.
Arranging the above equation, we get
$ \therefore \ln \left( {\dfrac{{a(b - x)}}{{b(a - x)}}} \right) = (b - a)kt $
We can write the rate law, in terms of original symbols.
$ \ln \left( {\dfrac{{{{[A]}_0}[B]}}{{{{[B]}_0}[A]}}} \right) = ({[B]_0} - {[A]_0})kt $
This rate law works for all the values of concentration in which both the concentration i.e. ‘ $ a $ ’ and ‘ $ b $ ’ of $ A $ and $ B $ respectively are not equal ( $ a \ne b $ ) whether it is $ a > b $ or $ b > a $ .
Note:
It must be remembered that the overall order of reaction is two for the second order reaction. We know that the rate for second order reaction is written as $ r = k[A][B] $ . Sometimes it is also expressed as $ r = k{[A]^2} $ when one reactant is given.
Recently Updated Pages
What is the meaning of nascent oxygen class 11 chemistry CBSE

A ladder is leaned against a smooth wall and allowed class 11 physics CBSE

What happens to the kinetic energy when 1 The mass class 11 physics CBSE

Addition of hydrogen bromide to propene yields 2 bromopropane class 11 chemistry CBSE

Two identical balls A and B are released from the positions class 11 physics CBSE

Describe with the help of a diagram the structure of class 11 biology CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

