
How to derive power reducing formula for $\int {\left( {{{\sec }^n}x} \right)dx} $ and $\int {\left( {{{\tan }^n}x} \right)dx} $ for integration?
Answer
528.6k+ views
Hint: We have to derive power reducing formula for $\int {\left( {{{\sec }^n}x} \right)dx} $ and $\int {\left( {{{\tan }^n}x} \right)dx} $ for integration. For $\int {\left( {{{\sec }^n}x} \right)dx} $, began by writing ${\sec ^n}x$ as ${\sec ^{n - 2}}x \cdot {\sec ^2}xdx$ and letting $u = {\sec ^{n - 2}}x$ and $dv = {\sec ^2}xdx$. Then use integration by parts to derive the result. For $\int {\left( {{{\tan }^n}x} \right)dx} $, began by writing ${\tan ^n}x$ as ${\tan ^{n - 2}}x \cdot {\tan ^2}x$ and then use trigonometry identity to convert ${\tan ^2}x$ into ${\sec ^2}x$. Then, let $u = {\tan ^{n - 2}}x$ and $dv = {\sec ^2}xdx$ in integration by parts and derive the result.
Formula used:
The integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
Trigonometric identity: ${\tan ^2}x + 1 = {\sec ^2}x$
The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
Integration formula: $\int {{{\sec }^2}xdx} = \tan x$ and \[\int {\sec xdx} = \ln \left| {\sec x + \tan x} \right|\]
Differentiation formula: $\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x$
Integration by parts: $\int {udv} = uv - \int {vdu} $
Complete step by step solution:
We have to derive power reducing formula for $\int {\left( {{{\sec }^n}x} \right)dx} $ and $\int {\left( {{{\tan }^n}x} \right)dx} $ for integration.
Consider $\int {\left( {{{\sec }^n}x} \right)dx} $
It can be written as $\int {{{\sec }^{n - 2}}x \cdot {{\sec }^2}xdx} $
Now, use integration by parts with $u = {\sec ^{n - 2}}x$ and $dv = {\sec ^2}xdx$…(i)
Differentiate $u$ with respect to $x$.
$\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {{{\sec }^{n - 2}}x} \right)$…(ii)
Now, using the differentiation formula $\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x$ in differentiation (ii), we get
$\dfrac{{du}}{{dx}} = \left( {n - 2} \right){\sec ^{n - 2}}x\left( {\sec x\tan x} \right)$
$ \Rightarrow du = \left( {n - 2} \right){\sec ^{n - 1}}x\tan x$…(iii)
Now, integrate $v$ with respect to $x$.
$\int {dv} = \int {{{\sec }^2}xdx} $…(iv)
Now, using the integration formula $\int {{{\sec }^2}xdx} = \tan x$ in integral (iv), we get
$v = \tan x$…(v)
The integration by parts formula is:
$\int {udv} = uv - \int {vdu} $
Put the value of $u,v,du,dv$ from (i), (iii) and (v).
$\int {{{\sec }^{n - 2}}x \cdot {{\sec }^2}xdx} = {\sec ^{n - 2}}x\tan x - \int {\tan x\left( {n - 2} \right){{\sec }^{n - 1}}x\tan xdx} $
Using property that the integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
$ \Rightarrow \int {{{\sec }^n}xdx} = {\sec ^{n - 2}}x\tan x - \left( {n - 2} \right)\int {{{\tan }^2}x{{\sec }^{n - 1}}xdx} $…(vi)
Now, put the value of ${\tan ^2}x$ in integral (vi).
$ \Rightarrow \int {{{\sec }^n}xdx} = {\sec ^{n - 2}}x\tan x - \left( {n - 2} \right)\int {\left( {{{\sec }^x} - 1} \right){{\sec }^{n - 1}}xdx} $
$ \Rightarrow \int {{{\sec }^n}xdx} = {\sec ^{n - 2}}x\tan x - \left( {n - 2} \right)\int {{{\sec }^n}xdx} + \left( {n - 2} \right)\int {{{\sec }^{n - 2}}xdx} $
Move $\left( {n - 2} \right)\int {{{\sec }^n}xdx} $ to the left side and simplify it.
$ \Rightarrow \left( {1 + n - 2} \right)\int {{{\sec }^n}xdx} = {\sec ^{n - 2}}x\tan x + \left( {n - 2} \right)\int {{{\sec }^{n - 2}}xdx} $
$ \Rightarrow \int {{{\sec }^n}xdx} = \dfrac{{{{\sec }^{n - 2}}x\tan x}}{{n - 1}} + \dfrac{{n - 2}}{{n - 1}}\int {{{\sec }^{n - 2}}xdx} $
Second integral: $\int {\left( {{{\tan }^n}x} \right)dx} $
It can be written as $\int {{{\tan }^{n - 2}}x \cdot {{\tan }^2}xdx} $
Use identity ${\tan ^2}x + 1 = {\sec ^2}x$.
\[ \Rightarrow \int {{{\tan }^{n - 2}}x \cdot {{\tan }^2}xdx} = \int {{{\tan }^{n - 2}}x \cdot \left( {{{\sec }^2}x - 1} \right)dx} \]
\[ \Rightarrow \int {{{\tan }^{n - 2}}x \cdot {{\tan }^2}xdx} = \int {{{\tan }^{n - 2}}x \cdot {{\sec }^2}xdx} - \int {{{\tan }^{n - 2}}xdx} \]
Now, use integration by parts with $u = {\tan ^{n - 2}}x$ and $dv = {\sec ^2}xdx$…(vii)
Differentiate $u$ with respect to $x$.
$\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {{{\tan }^{n - 2}}x} \right)$…(viii)
Now, using the differentiation formula $\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x$ in differentiation (viii), we get
$\dfrac{{du}}{{dx}} = \left( {n - 2} \right){\tan ^{n - 1}}x\left( {{{\sec }^2}x} \right)$
$ \Rightarrow du = \left( {n - 2} \right){\tan ^{n - 1}}x{\sec ^2}x$…(ix)
Now, integrate $v$ with respect to $x$.
$\int {dv} = \int {{{\sec }^2}xdx} $…(x)
Now, using the integration formula $\int {{{\sec }^2}xdx} = \tan x$ in integral (x), we get
$v = \tan x$…(xi)
The integration by parts formula is:
$\int {udv} = uv - \int {vdu} $
Put the value of $u,v,du,dv$ from (vii), (ix) and (xi).
$\int {{{\tan }^{n - 2}}x \cdot {{\tan }^2}xdx} = {\tan ^{n - 2}}x\tan x - \int {\tan x\left( {n - 2} \right){{\tan }^{n - 1}}x{{\sec }^2}xdx} - \int {{{\tan }^{n - 2}}xdx} $
Using property that the integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
$ \Rightarrow \int {{{\tan }^n}xdx} = {\tan ^{n - 1}}x - \left( {n - 2} \right)\int {{{\tan }^n}x{{\sec }^2}xdx} - \int {{{\tan }^{n - 2}}xdx} $…(xii)
Now, put the value of ${\sec ^2}x$ in integral (xii).
$ \Rightarrow \int {{{\tan }^n}xdx} = {\tan ^{n - 1}}x - \left( {n - 2} \right)\int {{{\tan }^n}x\left( {{{\tan }^2}x + 1} \right)dx} - \int {{{\tan }^{n - 2}}xdx} $
$ \Rightarrow \int {{{\tan }^n}xdx} = {\tan ^{n - 1}}x - \left( {n - 2} \right)\int {{{\tan }^{n + 2}}xdx - } \left( {n - 2} \right)\int {{{\tan }^n}xdx} - \int {{{\tan }^{n - 2}}xdx} $
Move $\left( {n - 2} \right)\int {{{\tan }^n}xdx} $ to the left side and simplify it.
$ \Rightarrow \left( {1 + n - 2} \right)\int {{{\tan }^n}xdx} = {\tan ^{n - 1}}x + \left( {n - 1} \right)\int {{{\tan }^{n - 2}}xdx} $
$ \Rightarrow \int {{{\tan }^n}xdx} = \dfrac{{{{\tan }^{n - 1}}x}}{{n - 1}} + \int {{{\tan }^{n - 2}}xdx} $
Final solution: Hence, $\int {{{\sec }^n}xdx} = \dfrac{{{{\sec }^{n - 2}}x\tan x}}{{n - 1}} + \dfrac{{n - 2}}{{n - 1}}\int {{{\sec }^{n - 2}}xdx} $ and $\int {{{\tan }^n}xdx} = \dfrac{{{{\tan }^{n - 1}}x}}{{n - 1}} + \int {{{\tan }^{n - 2}}xdx} $.
Note:
In the reduction formulas, we reduce the exponent of secant and tangent by $2$. Thus, if the formulas are applied repeatedly, the exponent can eventually be reduced to $0$ if $n$ is even or $1$ if $n$ is odd, at which point the integration can be completed.
Formula used:
The integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
Trigonometric identity: ${\tan ^2}x + 1 = {\sec ^2}x$
The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
Integration formula: $\int {{{\sec }^2}xdx} = \tan x$ and \[\int {\sec xdx} = \ln \left| {\sec x + \tan x} \right|\]
Differentiation formula: $\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x$
Integration by parts: $\int {udv} = uv - \int {vdu} $
Complete step by step solution:
We have to derive power reducing formula for $\int {\left( {{{\sec }^n}x} \right)dx} $ and $\int {\left( {{{\tan }^n}x} \right)dx} $ for integration.
Consider $\int {\left( {{{\sec }^n}x} \right)dx} $
It can be written as $\int {{{\sec }^{n - 2}}x \cdot {{\sec }^2}xdx} $
Now, use integration by parts with $u = {\sec ^{n - 2}}x$ and $dv = {\sec ^2}xdx$…(i)
Differentiate $u$ with respect to $x$.
$\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {{{\sec }^{n - 2}}x} \right)$…(ii)
Now, using the differentiation formula $\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x$ in differentiation (ii), we get
$\dfrac{{du}}{{dx}} = \left( {n - 2} \right){\sec ^{n - 2}}x\left( {\sec x\tan x} \right)$
$ \Rightarrow du = \left( {n - 2} \right){\sec ^{n - 1}}x\tan x$…(iii)
Now, integrate $v$ with respect to $x$.
$\int {dv} = \int {{{\sec }^2}xdx} $…(iv)
Now, using the integration formula $\int {{{\sec }^2}xdx} = \tan x$ in integral (iv), we get
$v = \tan x$…(v)
The integration by parts formula is:
$\int {udv} = uv - \int {vdu} $
Put the value of $u,v,du,dv$ from (i), (iii) and (v).
$\int {{{\sec }^{n - 2}}x \cdot {{\sec }^2}xdx} = {\sec ^{n - 2}}x\tan x - \int {\tan x\left( {n - 2} \right){{\sec }^{n - 1}}x\tan xdx} $
Using property that the integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
$ \Rightarrow \int {{{\sec }^n}xdx} = {\sec ^{n - 2}}x\tan x - \left( {n - 2} \right)\int {{{\tan }^2}x{{\sec }^{n - 1}}xdx} $…(vi)
Now, put the value of ${\tan ^2}x$ in integral (vi).
$ \Rightarrow \int {{{\sec }^n}xdx} = {\sec ^{n - 2}}x\tan x - \left( {n - 2} \right)\int {\left( {{{\sec }^x} - 1} \right){{\sec }^{n - 1}}xdx} $
$ \Rightarrow \int {{{\sec }^n}xdx} = {\sec ^{n - 2}}x\tan x - \left( {n - 2} \right)\int {{{\sec }^n}xdx} + \left( {n - 2} \right)\int {{{\sec }^{n - 2}}xdx} $
Move $\left( {n - 2} \right)\int {{{\sec }^n}xdx} $ to the left side and simplify it.
$ \Rightarrow \left( {1 + n - 2} \right)\int {{{\sec }^n}xdx} = {\sec ^{n - 2}}x\tan x + \left( {n - 2} \right)\int {{{\sec }^{n - 2}}xdx} $
$ \Rightarrow \int {{{\sec }^n}xdx} = \dfrac{{{{\sec }^{n - 2}}x\tan x}}{{n - 1}} + \dfrac{{n - 2}}{{n - 1}}\int {{{\sec }^{n - 2}}xdx} $
Second integral: $\int {\left( {{{\tan }^n}x} \right)dx} $
It can be written as $\int {{{\tan }^{n - 2}}x \cdot {{\tan }^2}xdx} $
Use identity ${\tan ^2}x + 1 = {\sec ^2}x$.
\[ \Rightarrow \int {{{\tan }^{n - 2}}x \cdot {{\tan }^2}xdx} = \int {{{\tan }^{n - 2}}x \cdot \left( {{{\sec }^2}x - 1} \right)dx} \]
\[ \Rightarrow \int {{{\tan }^{n - 2}}x \cdot {{\tan }^2}xdx} = \int {{{\tan }^{n - 2}}x \cdot {{\sec }^2}xdx} - \int {{{\tan }^{n - 2}}xdx} \]
Now, use integration by parts with $u = {\tan ^{n - 2}}x$ and $dv = {\sec ^2}xdx$…(vii)
Differentiate $u$ with respect to $x$.
$\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {{{\tan }^{n - 2}}x} \right)$…(viii)
Now, using the differentiation formula $\dfrac{d}{{dx}}\left( {\tan x} \right) = {\sec ^2}x$ in differentiation (viii), we get
$\dfrac{{du}}{{dx}} = \left( {n - 2} \right){\tan ^{n - 1}}x\left( {{{\sec }^2}x} \right)$
$ \Rightarrow du = \left( {n - 2} \right){\tan ^{n - 1}}x{\sec ^2}x$…(ix)
Now, integrate $v$ with respect to $x$.
$\int {dv} = \int {{{\sec }^2}xdx} $…(x)
Now, using the integration formula $\int {{{\sec }^2}xdx} = \tan x$ in integral (x), we get
$v = \tan x$…(xi)
The integration by parts formula is:
$\int {udv} = uv - \int {vdu} $
Put the value of $u,v,du,dv$ from (vii), (ix) and (xi).
$\int {{{\tan }^{n - 2}}x \cdot {{\tan }^2}xdx} = {\tan ^{n - 2}}x\tan x - \int {\tan x\left( {n - 2} \right){{\tan }^{n - 1}}x{{\sec }^2}xdx} - \int {{{\tan }^{n - 2}}xdx} $
Using property that the integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
$ \Rightarrow \int {{{\tan }^n}xdx} = {\tan ^{n - 1}}x - \left( {n - 2} \right)\int {{{\tan }^n}x{{\sec }^2}xdx} - \int {{{\tan }^{n - 2}}xdx} $…(xii)
Now, put the value of ${\sec ^2}x$ in integral (xii).
$ \Rightarrow \int {{{\tan }^n}xdx} = {\tan ^{n - 1}}x - \left( {n - 2} \right)\int {{{\tan }^n}x\left( {{{\tan }^2}x + 1} \right)dx} - \int {{{\tan }^{n - 2}}xdx} $
$ \Rightarrow \int {{{\tan }^n}xdx} = {\tan ^{n - 1}}x - \left( {n - 2} \right)\int {{{\tan }^{n + 2}}xdx - } \left( {n - 2} \right)\int {{{\tan }^n}xdx} - \int {{{\tan }^{n - 2}}xdx} $
Move $\left( {n - 2} \right)\int {{{\tan }^n}xdx} $ to the left side and simplify it.
$ \Rightarrow \left( {1 + n - 2} \right)\int {{{\tan }^n}xdx} = {\tan ^{n - 1}}x + \left( {n - 1} \right)\int {{{\tan }^{n - 2}}xdx} $
$ \Rightarrow \int {{{\tan }^n}xdx} = \dfrac{{{{\tan }^{n - 1}}x}}{{n - 1}} + \int {{{\tan }^{n - 2}}xdx} $
Final solution: Hence, $\int {{{\sec }^n}xdx} = \dfrac{{{{\sec }^{n - 2}}x\tan x}}{{n - 1}} + \dfrac{{n - 2}}{{n - 1}}\int {{{\sec }^{n - 2}}xdx} $ and $\int {{{\tan }^n}xdx} = \dfrac{{{{\tan }^{n - 1}}x}}{{n - 1}} + \int {{{\tan }^{n - 2}}xdx} $.
Note:
In the reduction formulas, we reduce the exponent of secant and tangent by $2$. Thus, if the formulas are applied repeatedly, the exponent can eventually be reduced to $0$ if $n$ is even or $1$ if $n$ is odd, at which point the integration can be completed.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

