
Derive an expression for average power of an AC (alternating current) circuit.
Answer
515.7k+ views
Hint: Use values of potential difference and current of an AC circuit and find average work first then find power from it.
Compete step by step solution:
Average power in an AC circuit:
Let V be the alternating potential difference in the AC circuit given as: -
${\text{V = }}{{\text{V}}_{\text{o}}}{\text{sin}}\omega {\text{t}}$ ….. (i)
Then the AC current developed will lag by a phase angle $\phi $ then,
${\text{I = }}{{\text{I}}_{\text{o}}}{\text{sin}}\left( {\omega {\text{t - }}\phi } \right)$ ….. (ii)
Now by using equations (i) and (ii) we will find the total work done over a complete cycle of AC
${\text{W = }}\int\limits_{\text{0}}^{\text{T}} {{\text{VI}} \cdot dt} $ …. (iii)
Put value of V and I from equations (i) and (ii) in the equation (iii)
$\therefore {\text{W = }}\int\limits_{\text{0}}^{\text{T}} {{{\text{V}}_{\text{o}}}} {\text{sin}}\omega t \cdot {{\text{I}}_{\text{o}}}{\text{sin}}\left( {\omega t{\text{ - }}\phi } \right) \cdot dt$
${\text{ = }}{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}\int\limits_{\text{0}}^{\text{T}} {{\text{sin}}\omega t{\text{sin}}\left( {\omega t{\text{ - }}\phi } \right)} \cdot dt$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\int\limits_0^T {2\sin \omega t\sin \left( {\omega t - \phi } \right)} \cdot dt$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\int\limits_0^T {\cos \left( {\omega t - \omega t + \phi } \right)} - \cos \left( {\omega t + \omega t - \phi } \right) \cdot dt$ $\left[ {\because 2\sin {\text{A}}\sin {\text{B = }}\cos \left( {{\text{A - B}}} \right) - \cos \left( {{\text{A + B}}} \right)} \right]$
Thus,
${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\left[ {t\cos \phi - \sin \dfrac{{\left( {2\omega t - \phi } \right)}}{{2\omega }}} \right]_0^T$
${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\left[ {{\text{T}}\cos \phi } \right]$
So, ${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}} \cdot \cos \phi \cdot {\text{T}}$
$\therefore $ Average power in AC circuit over a complete cycle is given by: -
${\text{P = }}\dfrac{{\text{W}}}{{\text{T}}}$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\cos \phi $
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}}}{{\sqrt {\text{2}} }}\dfrac{{{{\text{I}}_{\text{o}}}}}{{\sqrt {\text{2}} }}\cos \phi $
$\therefore {\text{P = }}{{\text{V}}_{{\text{rms}}}}{{\text{I}}_{{\text{rms}}}}\cos \phi $
Note: Start a solution with the basic way to find the average work done by using its simple formula and be careful while using the properties and average value of trigonometric functions. At the end just convert work done into power.
Compete step by step solution:
Average power in an AC circuit:
Let V be the alternating potential difference in the AC circuit given as: -
${\text{V = }}{{\text{V}}_{\text{o}}}{\text{sin}}\omega {\text{t}}$ ….. (i)
Then the AC current developed will lag by a phase angle $\phi $ then,
${\text{I = }}{{\text{I}}_{\text{o}}}{\text{sin}}\left( {\omega {\text{t - }}\phi } \right)$ ….. (ii)
Now by using equations (i) and (ii) we will find the total work done over a complete cycle of AC
${\text{W = }}\int\limits_{\text{0}}^{\text{T}} {{\text{VI}} \cdot dt} $ …. (iii)
Put value of V and I from equations (i) and (ii) in the equation (iii)
$\therefore {\text{W = }}\int\limits_{\text{0}}^{\text{T}} {{{\text{V}}_{\text{o}}}} {\text{sin}}\omega t \cdot {{\text{I}}_{\text{o}}}{\text{sin}}\left( {\omega t{\text{ - }}\phi } \right) \cdot dt$
${\text{ = }}{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}\int\limits_{\text{0}}^{\text{T}} {{\text{sin}}\omega t{\text{sin}}\left( {\omega t{\text{ - }}\phi } \right)} \cdot dt$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\int\limits_0^T {2\sin \omega t\sin \left( {\omega t - \phi } \right)} \cdot dt$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\int\limits_0^T {\cos \left( {\omega t - \omega t + \phi } \right)} - \cos \left( {\omega t + \omega t - \phi } \right) \cdot dt$ $\left[ {\because 2\sin {\text{A}}\sin {\text{B = }}\cos \left( {{\text{A - B}}} \right) - \cos \left( {{\text{A + B}}} \right)} \right]$
Thus,
${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\left[ {t\cos \phi - \sin \dfrac{{\left( {2\omega t - \phi } \right)}}{{2\omega }}} \right]_0^T$
${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\left[ {{\text{T}}\cos \phi } \right]$
So, ${\text{W = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}} \cdot \cos \phi \cdot {\text{T}}$
$\therefore $ Average power in AC circuit over a complete cycle is given by: -
${\text{P = }}\dfrac{{\text{W}}}{{\text{T}}}$
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}{{\text{I}}_{\text{o}}}}}{{\text{2}}}\cos \phi $
${\text{ = }}\dfrac{{{{\text{V}}_{\text{o}}}}}{{\sqrt {\text{2}} }}\dfrac{{{{\text{I}}_{\text{o}}}}}{{\sqrt {\text{2}} }}\cos \phi $
$\therefore {\text{P = }}{{\text{V}}_{{\text{rms}}}}{{\text{I}}_{{\text{rms}}}}\cos \phi $
Note: Start a solution with the basic way to find the average work done by using its simple formula and be careful while using the properties and average value of trigonometric functions. At the end just convert work done into power.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

