
What is the derivative of \[y={{\left( \sqrt{x} \right)}^{x}}\]?
Answer
507.3k+ views
Hint: In this question we have to use the concepts of derivatives of functions of a function along with the concept of logarithm. Here we have to use the rules of logarithm such as \[\ln \left( {{a}^{m}} \right)=m\ln \left( a \right)\]. Also we have to use the product rule of derivatives that is \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\].
Complete step by step solution:
Now, we have to find the derivative of \[y={{\left( \sqrt{x} \right)}^{x}}\]
For this consider,
\[\Rightarrow y={{\left( \sqrt{x} \right)}^{x}}\]
Let us apply natural log on both sides
\[\Rightarrow \ln y=\ln \left[ {{\left( \sqrt{x} \right)}^{x}} \right]\]
As we know that, \[\ln \left( {{a}^{m}} \right)=m\ln \left( a \right)\] we get,
\[\Rightarrow \ln y=x\left[ \ln \left( \sqrt{x} \right) \right]\]
Now we take derivatives on both sides,
\[\Rightarrow \dfrac{d}{dx}\left( \ln y \right)=\dfrac{d}{dx}x\left[ \ln \left( \sqrt{x} \right) \right]\]
We know that \[\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}\] and product rule of derivatives that is \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\]
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=x\dfrac{d}{dx}\left[ \ln \left( \sqrt{x} \right) \right]+\ln \left( \sqrt{x} \right)\dfrac{d}{dx}\left( x \right)\]
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=x\dfrac{1}{\sqrt{x}}\dfrac{d}{dx}\sqrt{x}+\ln \left( \sqrt{x} \right)\cdot 1\]
As we know the derivative of \[\sqrt{x}\] is equal to \[\dfrac{1}{2\sqrt{x}}\] that is \[\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}\]
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{x}{\sqrt{x}}\cdot \dfrac{1}{2\sqrt{x}}+\ln \left( \sqrt{x} \right)\]
As \[\sqrt{x}\cdot \sqrt{x}={{\left( \sqrt{x} \right)}^{2}}={{\left( {{x}^{\dfrac{1}{2}}} \right)}^{2}}=x\] we can write,
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{x}{2x}+\ln \left( \sqrt{x} \right)\]
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{1}{2}+\ln \left( \sqrt{x} \right)\]
By taking y on right hand side we get,
\[\Rightarrow \dfrac{dy}{dx}=y\left[ \dfrac{1}{2}+\ln \left( \sqrt{x} \right) \right]\]
By substituting the value of y we can write,
\[\Rightarrow \dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left[ \dfrac{1}{2}+\ln \left( \sqrt{x} \right) \right]\]
As we know that, \[\sqrt{x}\] can be expressed as \[{{x}^{\dfrac{1}{2}}}\]
\[\Rightarrow \dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left[ \dfrac{1}{2}+\ln \left( {{x}^{\dfrac{1}{2}}} \right) \right]\]
By using \[\ln \left( {{a}^{m}} \right)=m\ln \left( a \right)\] we can write
\[\Rightarrow \dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left[ \dfrac{1}{2}+\dfrac{1}{2}\ln \left( x \right) \right]\]
\[\Rightarrow \dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left( \dfrac{1}{2} \right)\left( 1+\left( \ln x \right) \right)\]
Hence, the derivative of \[y={{\left( \sqrt{x} \right)}^{x}}\] is given by \[\dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left( \dfrac{1}{2} \right)\left( 1+\left( \ln x \right) \right)\]
Note: In this question one of the students may solve as follows:
\[\Rightarrow y={{\left( \sqrt{x} \right)}^{x}}\]
As we know that, \[\sqrt{x}\] can be expressed as \[{{x}^{\dfrac{1}{2}}}\]
\[\Rightarrow y={{\left( {{x}^{\dfrac{1}{2}}} \right)}^{x}}\]
Now by using \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}\] we can write
\[\Rightarrow y={{x}^{\dfrac{x}{2}}}\]
Now applying natural log on both sides we get
\[\Rightarrow \ln y=\dfrac{x}{2}\ln x\]
And now by taking exponential of both sides we can write
\[\Rightarrow y={{e}^{\dfrac{x}{2}\ln x}}\]
Now we differentiate both sides
\[\Rightarrow \dfrac{dy}{dx}={{e}^{\dfrac{x}{2}\ln x}}\dfrac{d}{dx}\left( \dfrac{x}{2}\ln x \right)\]
To find the derivative of the bracket we have to use product rule \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\]
\[\Rightarrow \dfrac{dy}{dx}={{e}^{\dfrac{x}{2}\ln x}}\left( \dfrac{x}{2}\dfrac{d}{dx}\left( \ln x \right)+\left( \ln x \right)\dfrac{d}{dx}\left( \dfrac{x}{2} \right) \right)\]
\[\Rightarrow \dfrac{dy}{dx}={{e}^{\dfrac{x}{2}\ln x}}\left( \dfrac{x}{2}\dfrac{1}{x}+\left( \ln x \right)\left( \dfrac{1}{2} \right) \right)\]
\[\Rightarrow \dfrac{dy}{dx}={{e}^{\dfrac{x}{2}\ln x}}\left( \dfrac{1}{2}+\left( \ln x \right)\left( \dfrac{1}{2} \right) \right)\]
\[\Rightarrow \dfrac{dy}{dx}={{e}^{\dfrac{x}{2}\ln x}}\left( \dfrac{1}{2} \right)\left( 1+\left( \ln x \right) \right)\]
Now, as we have \[y={{e}^{\dfrac{x}{2}\ln x}}\] and \[y={{\left( \sqrt{x} \right)}^{x}}\], we can replace \[{{e}^{\dfrac{x}{2}\ln x}}\] by \[{{\left( \sqrt{x} \right)}^{x}}\] and hence we can write
\[\Rightarrow \dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left( \dfrac{1}{2} \right)\left( 1+\left( \ln x \right) \right)\]
Hence the derivative of \[y={{\left( \sqrt{x} \right)}^{x}}\] is given by \[\dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left( \dfrac{1}{2} \right)\left( 1+\left( \ln x \right) \right)\]
Complete step by step solution:
Now, we have to find the derivative of \[y={{\left( \sqrt{x} \right)}^{x}}\]
For this consider,
\[\Rightarrow y={{\left( \sqrt{x} \right)}^{x}}\]
Let us apply natural log on both sides
\[\Rightarrow \ln y=\ln \left[ {{\left( \sqrt{x} \right)}^{x}} \right]\]
As we know that, \[\ln \left( {{a}^{m}} \right)=m\ln \left( a \right)\] we get,
\[\Rightarrow \ln y=x\left[ \ln \left( \sqrt{x} \right) \right]\]
Now we take derivatives on both sides,
\[\Rightarrow \dfrac{d}{dx}\left( \ln y \right)=\dfrac{d}{dx}x\left[ \ln \left( \sqrt{x} \right) \right]\]
We know that \[\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}\] and product rule of derivatives that is \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\]
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=x\dfrac{d}{dx}\left[ \ln \left( \sqrt{x} \right) \right]+\ln \left( \sqrt{x} \right)\dfrac{d}{dx}\left( x \right)\]
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=x\dfrac{1}{\sqrt{x}}\dfrac{d}{dx}\sqrt{x}+\ln \left( \sqrt{x} \right)\cdot 1\]
As we know the derivative of \[\sqrt{x}\] is equal to \[\dfrac{1}{2\sqrt{x}}\] that is \[\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}\]
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{x}{\sqrt{x}}\cdot \dfrac{1}{2\sqrt{x}}+\ln \left( \sqrt{x} \right)\]
As \[\sqrt{x}\cdot \sqrt{x}={{\left( \sqrt{x} \right)}^{2}}={{\left( {{x}^{\dfrac{1}{2}}} \right)}^{2}}=x\] we can write,
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{x}{2x}+\ln \left( \sqrt{x} \right)\]
\[\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{1}{2}+\ln \left( \sqrt{x} \right)\]
By taking y on right hand side we get,
\[\Rightarrow \dfrac{dy}{dx}=y\left[ \dfrac{1}{2}+\ln \left( \sqrt{x} \right) \right]\]
By substituting the value of y we can write,
\[\Rightarrow \dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left[ \dfrac{1}{2}+\ln \left( \sqrt{x} \right) \right]\]
As we know that, \[\sqrt{x}\] can be expressed as \[{{x}^{\dfrac{1}{2}}}\]
\[\Rightarrow \dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left[ \dfrac{1}{2}+\ln \left( {{x}^{\dfrac{1}{2}}} \right) \right]\]
By using \[\ln \left( {{a}^{m}} \right)=m\ln \left( a \right)\] we can write
\[\Rightarrow \dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left[ \dfrac{1}{2}+\dfrac{1}{2}\ln \left( x \right) \right]\]
\[\Rightarrow \dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left( \dfrac{1}{2} \right)\left( 1+\left( \ln x \right) \right)\]
Hence, the derivative of \[y={{\left( \sqrt{x} \right)}^{x}}\] is given by \[\dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left( \dfrac{1}{2} \right)\left( 1+\left( \ln x \right) \right)\]
Note: In this question one of the students may solve as follows:
\[\Rightarrow y={{\left( \sqrt{x} \right)}^{x}}\]
As we know that, \[\sqrt{x}\] can be expressed as \[{{x}^{\dfrac{1}{2}}}\]
\[\Rightarrow y={{\left( {{x}^{\dfrac{1}{2}}} \right)}^{x}}\]
Now by using \[{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}}\] we can write
\[\Rightarrow y={{x}^{\dfrac{x}{2}}}\]
Now applying natural log on both sides we get
\[\Rightarrow \ln y=\dfrac{x}{2}\ln x\]
And now by taking exponential of both sides we can write
\[\Rightarrow y={{e}^{\dfrac{x}{2}\ln x}}\]
Now we differentiate both sides
\[\Rightarrow \dfrac{dy}{dx}={{e}^{\dfrac{x}{2}\ln x}}\dfrac{d}{dx}\left( \dfrac{x}{2}\ln x \right)\]
To find the derivative of the bracket we have to use product rule \[\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\]
\[\Rightarrow \dfrac{dy}{dx}={{e}^{\dfrac{x}{2}\ln x}}\left( \dfrac{x}{2}\dfrac{d}{dx}\left( \ln x \right)+\left( \ln x \right)\dfrac{d}{dx}\left( \dfrac{x}{2} \right) \right)\]
\[\Rightarrow \dfrac{dy}{dx}={{e}^{\dfrac{x}{2}\ln x}}\left( \dfrac{x}{2}\dfrac{1}{x}+\left( \ln x \right)\left( \dfrac{1}{2} \right) \right)\]
\[\Rightarrow \dfrac{dy}{dx}={{e}^{\dfrac{x}{2}\ln x}}\left( \dfrac{1}{2}+\left( \ln x \right)\left( \dfrac{1}{2} \right) \right)\]
\[\Rightarrow \dfrac{dy}{dx}={{e}^{\dfrac{x}{2}\ln x}}\left( \dfrac{1}{2} \right)\left( 1+\left( \ln x \right) \right)\]
Now, as we have \[y={{e}^{\dfrac{x}{2}\ln x}}\] and \[y={{\left( \sqrt{x} \right)}^{x}}\], we can replace \[{{e}^{\dfrac{x}{2}\ln x}}\] by \[{{\left( \sqrt{x} \right)}^{x}}\] and hence we can write
\[\Rightarrow \dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left( \dfrac{1}{2} \right)\left( 1+\left( \ln x \right) \right)\]
Hence the derivative of \[y={{\left( \sqrt{x} \right)}^{x}}\] is given by \[\dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left( \dfrac{1}{2} \right)\left( 1+\left( \ln x \right) \right)\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

