
What is the derivative of the function,
$f(x) = {e^{\tan x}} + \ln (\sec x) - {e^{\ln x}}$ at $x = \dfrac{\pi }{4}$
(A) e/2
(B) e
(C) 2e
(D) 4e
Answer
612.3k+ views
Hint: Differentiation of \[{e^u}\] with respect to x is \[{e^u}.\dfrac{{du}}{{dx}}\] and that of ln(u) with respect to x is $\dfrac{1}{u}.\dfrac{{du}}{{dx}}$. Use these rules to differentiate the above function with respect to x and then put $x = \dfrac{\pi }{4}$ to find the required value.
Complete step by step answer:
From the given question,
$ \Rightarrow f(x) = {e^{\tan x}} + \ln (\sec x) - {e^{\ln x}}$
We know that ${e^{\ln x}} = x$. So using this, we’ll get:
$ \Rightarrow f(x) = {e^{\tan x}} + \ln (\sec x) - x$
Differentiating it with respect to x, we’ll get:
$ \Rightarrow f'(x) = \dfrac{d}{{dx}}{e^{\tan x}} + \dfrac{d}{{dx}}\ln (\sec x) - \dfrac{d}{{dx}}x$
We know that \[\dfrac{d}{{dx}}{e^u} = {e^u}.\dfrac{{du}}{{dx}}\], $\dfrac{d}{{dx}}\ln u = \dfrac{1}{u}.\dfrac{{du}}{{dx}}$ and $\dfrac{d}{{dx}}x = 1$. Using these results, we’ll get:
$ \Rightarrow f'(x) = {e^{\tan x}}.\dfrac{d}{{dx}}\tan x + \dfrac{1}{{\sec x}}.\dfrac{d}{{dx}}\sec x - 1$
Further, we know that $\dfrac{d}{{dx}}\tan x = {\sec ^2}x$ and $\dfrac{d}{{dx}}\sec x = \sec x\tan x$. Using these formulas, we’ll get:
$
\Rightarrow f'(x) = {e^{\tan x}}.{\sec ^2}x + \dfrac{1}{{\sec x}}\sec x\tan x - 1 \\
\Rightarrow f'(x) = {e^{\tan x}}.{\sec ^2}x + \tan x - 1 \\
$
Now putting $x = \dfrac{\pi }{4}$, we’ll get:
$ \Rightarrow f'\left( {\dfrac{\pi }{4}} \right) = {e^{\tan \dfrac{\pi }{4}}}.{\sec ^2}\dfrac{\pi }{4} + \tan \dfrac{\pi }{4} - 1$
We also know that $\tan \dfrac{\pi }{4} = 1$ and $\sec \dfrac{\pi }{4} = \sqrt 2 $. Putting these values, we’ll get:
$
\Rightarrow f'\left( {\dfrac{\pi }{4}} \right) = {e^1}.{\left( {\sqrt 2 } \right)^2} + 1 - 1 \\
\Rightarrow f'\left( {\dfrac{\pi }{4}} \right) = 2e \\
$
Therefore (C) is the correct option.
Note: We have used the chain rule of differentiation in the problem. According to this rule, if a function is such that $y = f\left( {g\left( x \right)} \right)$, then its differentiation is:
$ \Rightarrow \dfrac{{dy}}{{dx}} = f'\left( {g\left( x \right)} \right).g'\left( x \right)$
If we have to differentiate a composite function we have to use this method.
Complete step by step answer:
From the given question,
$ \Rightarrow f(x) = {e^{\tan x}} + \ln (\sec x) - {e^{\ln x}}$
We know that ${e^{\ln x}} = x$. So using this, we’ll get:
$ \Rightarrow f(x) = {e^{\tan x}} + \ln (\sec x) - x$
Differentiating it with respect to x, we’ll get:
$ \Rightarrow f'(x) = \dfrac{d}{{dx}}{e^{\tan x}} + \dfrac{d}{{dx}}\ln (\sec x) - \dfrac{d}{{dx}}x$
We know that \[\dfrac{d}{{dx}}{e^u} = {e^u}.\dfrac{{du}}{{dx}}\], $\dfrac{d}{{dx}}\ln u = \dfrac{1}{u}.\dfrac{{du}}{{dx}}$ and $\dfrac{d}{{dx}}x = 1$. Using these results, we’ll get:
$ \Rightarrow f'(x) = {e^{\tan x}}.\dfrac{d}{{dx}}\tan x + \dfrac{1}{{\sec x}}.\dfrac{d}{{dx}}\sec x - 1$
Further, we know that $\dfrac{d}{{dx}}\tan x = {\sec ^2}x$ and $\dfrac{d}{{dx}}\sec x = \sec x\tan x$. Using these formulas, we’ll get:
$
\Rightarrow f'(x) = {e^{\tan x}}.{\sec ^2}x + \dfrac{1}{{\sec x}}\sec x\tan x - 1 \\
\Rightarrow f'(x) = {e^{\tan x}}.{\sec ^2}x + \tan x - 1 \\
$
Now putting $x = \dfrac{\pi }{4}$, we’ll get:
$ \Rightarrow f'\left( {\dfrac{\pi }{4}} \right) = {e^{\tan \dfrac{\pi }{4}}}.{\sec ^2}\dfrac{\pi }{4} + \tan \dfrac{\pi }{4} - 1$
We also know that $\tan \dfrac{\pi }{4} = 1$ and $\sec \dfrac{\pi }{4} = \sqrt 2 $. Putting these values, we’ll get:
$
\Rightarrow f'\left( {\dfrac{\pi }{4}} \right) = {e^1}.{\left( {\sqrt 2 } \right)^2} + 1 - 1 \\
\Rightarrow f'\left( {\dfrac{\pi }{4}} \right) = 2e \\
$
Therefore (C) is the correct option.
Note: We have used the chain rule of differentiation in the problem. According to this rule, if a function is such that $y = f\left( {g\left( x \right)} \right)$, then its differentiation is:
$ \Rightarrow \dfrac{{dy}}{{dx}} = f'\left( {g\left( x \right)} \right).g'\left( x \right)$
If we have to differentiate a composite function we have to use this method.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

