
Definite Integral as the Limit of a Sum
Answer
562.8k+ views
Hint: We recall the definition of power series otherwise known as Taylor’s series and convergence. We use the standard Taylor’s series for the function $ \ln \left( 1+x \right) $ centred around $ x=a $ which is given by $ \ln \left( 1+x \right)=\ln \left( 1+a \right)+\sum\limits_{n=1}^{\infty }{\dfrac{{{\left( x-a \right)}^{n}}{{\left( -1 \right)}^{n+1}}}{n{{\left( 1+a \right)}^{n}}}} $ . We put $ {{x}^{2}} $ instead of $ x $ to get the power series of $ f\left( x \right)=\ln \left( {{x}^{2}}+1 \right) $ and radius of convergence $ r $ such that $ \left| x \right| < r $ obtained from the condition of convergence $ \displaystyle \lim_{n \to \infty }\left| \dfrac{{{t}_{n+1}}}{{{t}_{n}}} \right| < 1 $ .\[\]
Complete step by step answer:
We know that power series are given with infinite terms
\[\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{\left( x-c \right)}^{n}}}={{a}_{0}}+{{a}_{1}}\left( x-c \right)+{{a}_{2}}{{\left( x-c \right)}^{2}}+...\]
Here $ n $ is the power and $ c $ is called centre. We say is series is convergent around the centre $ c $ if $ \left| r \right|
< 1 $ where
\[r=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{t}_{n+1}}}{{{t}_{n}}} \right|\]
We also know that we can approximate any infinitely differentiable function $ f\left( x \right) $ as power series with centre $ x=a $ using Taylor’s approximation formula as written below
\[f\left( x \right)=\sum\limits_{n=0}^{\infty }{\dfrac{{{f}^{n}}\left( a \right)\left( x-a \right)}{n!}}\]
We know the Taylor’s series approximation of natural logarithmic function $ \ln \left( 1+x \right) $ around the centre $ x=a $ as
\[\ln \left( 1+x \right)=\ln \left( 1+a \right)+\sum\limits_{n=1}^{\infty }{\dfrac{{{\left( x-a \right)}^{n}}{{\left( -1 \right)}^{n+1}}}{n{{\left( 1+a \right)}^{n}}}}\]
We are asked in the question to find the Taylor’s series approximation of $ \ln \left( {{x}^{2}}+1 \right)=\ln \left( 1+{{x}^{2}} \right) $ which is similar to the power series of $ \ln \left( 1+x \right) $ . We put $ {{x}^{2}} $ instead of $ x $ in the above power series of $ \ln \left( 1+x \right) $ and the required power series around the centre $ x=a $ as
\[\ln \left( 1+{{x}^{2}} \right)=\ln \left( 1+a \right)+\sum\limits_{n=1}^{\infty }{\dfrac{{{\left( {{x}^{2}}-a \right)}^{n}}{{\left( -1 \right)}^{n+1}}}{n{{\left( 1+a \right)}^{n}}}}\]
We shall now apply the ratio test for testing convergence of the above series. We take the ratio of $ {{\left( n+1 \right)}^{th}} $ and $ {{n}^{th}} $ term and take limit $ n \to \infty $ to have
\[\begin{align}
& \displaystyle \lim_{n \to \infty }\left| \dfrac{{{t}_{n+1}}}{{{t}_{n}}} \right|=\displaystyle \lim_{n \to \infty }\left| \dfrac{\dfrac{{{\left( {{x}^{2}}-a \right)}^{n+1}}{{\left( -1 \right)}^{n+1+1}}}{\left( n+1 \right){{\left( 1+a \right)}^{n+1}}}}{\dfrac{{{\left( {{x}^{2}}-a \right)}^{n}}{{\left( -1 \right)}^{n+1}}}{n{{\left( 1+a \right)}^{n}}}} \right| \\
& \Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{t}_{n+1}}}{{{t}_{n}}} \right|=\displaystyle \lim_{n \to \infty }\left| \dfrac{\left( {{x}^{2}}-a \right)}{\left( 1+a \right)\left( n+1 \right)}\times n \right| \\
& \Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{t}_{n+1}}}{{{t}_{n}}} \right|=\left| \dfrac{{{x}^{2}}-1}{1+a} \right|\displaystyle \lim_{n \to \infty }\left| \dfrac{n}{n+1} \right| \\
& \Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{t}_{n+1}}}{{{t}_{n}}} \right|=\left| \dfrac{{{x}^{2}}-1}{1+a} \right|\times 1=\left| \dfrac{{{x}^{2}}-1}{1+a} \right| \\
\end{align}\]
So the absolute ratio has to be less than1 for the series to converge. We have;
\[\begin{align}
& \left| \dfrac{{{x}^{2}}-a}{a+1} \right| < 1 \\
& \Rightarrow \left| {{x}^{2}}-a \right| < a+1 \\
& \Rightarrow \left| {{x}^{2}} \right| < 2a+1 \\
& \Rightarrow \left| x \right| < \sqrt{1+2a} \\
\end{align}\]
So the radius of the convergence is $ \sqrt{1+2a} $ and convergence depends upon the centre $ x=a $ . \[\]
Note:
We note that the if we take centre $ x=0 $ we get the Maclaurine’s series as $ \sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n}}}={{a}_{0}}+{{a}_{1}}x+{{a}_{2}}{{x}^{2}}+... $ Here in this problem if we take centre $ x=0 $ then we get the alternating series $ \ln \left( 1+{{x}^{2}} \right)=\sum\limits_{n=1}^{\infty }{\dfrac{{{x}^{2n}}{{\left( -1 \right)}^{n+1}}}{n}}={{x}^{2}}-\dfrac{{{x}^{2}}}{4}+\dfrac{{{x}^{6}}}{3}-... $ . The Taylor’s series is used to solve the definite integral problem where the functions are non-integrable.
Complete step by step answer:
We know that power series are given with infinite terms
\[\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{\left( x-c \right)}^{n}}}={{a}_{0}}+{{a}_{1}}\left( x-c \right)+{{a}_{2}}{{\left( x-c \right)}^{2}}+...\]
Here $ n $ is the power and $ c $ is called centre. We say is series is convergent around the centre $ c $ if $ \left| r \right|
< 1 $ where
\[r=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{t}_{n+1}}}{{{t}_{n}}} \right|\]
We also know that we can approximate any infinitely differentiable function $ f\left( x \right) $ as power series with centre $ x=a $ using Taylor’s approximation formula as written below
\[f\left( x \right)=\sum\limits_{n=0}^{\infty }{\dfrac{{{f}^{n}}\left( a \right)\left( x-a \right)}{n!}}\]
We know the Taylor’s series approximation of natural logarithmic function $ \ln \left( 1+x \right) $ around the centre $ x=a $ as
\[\ln \left( 1+x \right)=\ln \left( 1+a \right)+\sum\limits_{n=1}^{\infty }{\dfrac{{{\left( x-a \right)}^{n}}{{\left( -1 \right)}^{n+1}}}{n{{\left( 1+a \right)}^{n}}}}\]
We are asked in the question to find the Taylor’s series approximation of $ \ln \left( {{x}^{2}}+1 \right)=\ln \left( 1+{{x}^{2}} \right) $ which is similar to the power series of $ \ln \left( 1+x \right) $ . We put $ {{x}^{2}} $ instead of $ x $ in the above power series of $ \ln \left( 1+x \right) $ and the required power series around the centre $ x=a $ as
\[\ln \left( 1+{{x}^{2}} \right)=\ln \left( 1+a \right)+\sum\limits_{n=1}^{\infty }{\dfrac{{{\left( {{x}^{2}}-a \right)}^{n}}{{\left( -1 \right)}^{n+1}}}{n{{\left( 1+a \right)}^{n}}}}\]
We shall now apply the ratio test for testing convergence of the above series. We take the ratio of $ {{\left( n+1 \right)}^{th}} $ and $ {{n}^{th}} $ term and take limit $ n \to \infty $ to have
\[\begin{align}
& \displaystyle \lim_{n \to \infty }\left| \dfrac{{{t}_{n+1}}}{{{t}_{n}}} \right|=\displaystyle \lim_{n \to \infty }\left| \dfrac{\dfrac{{{\left( {{x}^{2}}-a \right)}^{n+1}}{{\left( -1 \right)}^{n+1+1}}}{\left( n+1 \right){{\left( 1+a \right)}^{n+1}}}}{\dfrac{{{\left( {{x}^{2}}-a \right)}^{n}}{{\left( -1 \right)}^{n+1}}}{n{{\left( 1+a \right)}^{n}}}} \right| \\
& \Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{t}_{n+1}}}{{{t}_{n}}} \right|=\displaystyle \lim_{n \to \infty }\left| \dfrac{\left( {{x}^{2}}-a \right)}{\left( 1+a \right)\left( n+1 \right)}\times n \right| \\
& \Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{t}_{n+1}}}{{{t}_{n}}} \right|=\left| \dfrac{{{x}^{2}}-1}{1+a} \right|\displaystyle \lim_{n \to \infty }\left| \dfrac{n}{n+1} \right| \\
& \Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{t}_{n+1}}}{{{t}_{n}}} \right|=\left| \dfrac{{{x}^{2}}-1}{1+a} \right|\times 1=\left| \dfrac{{{x}^{2}}-1}{1+a} \right| \\
\end{align}\]
So the absolute ratio has to be less than1 for the series to converge. We have;
\[\begin{align}
& \left| \dfrac{{{x}^{2}}-a}{a+1} \right| < 1 \\
& \Rightarrow \left| {{x}^{2}}-a \right| < a+1 \\
& \Rightarrow \left| {{x}^{2}} \right| < 2a+1 \\
& \Rightarrow \left| x \right| < \sqrt{1+2a} \\
\end{align}\]
So the radius of the convergence is $ \sqrt{1+2a} $ and convergence depends upon the centre $ x=a $ . \[\]
Note:
We note that the if we take centre $ x=0 $ we get the Maclaurine’s series as $ \sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n}}}={{a}_{0}}+{{a}_{1}}x+{{a}_{2}}{{x}^{2}}+... $ Here in this problem if we take centre $ x=0 $ then we get the alternating series $ \ln \left( 1+{{x}^{2}} \right)=\sum\limits_{n=1}^{\infty }{\dfrac{{{x}^{2n}}{{\left( -1 \right)}^{n+1}}}{n}}={{x}^{2}}-\dfrac{{{x}^{2}}}{4}+\dfrac{{{x}^{6}}}{3}-... $ . The Taylor’s series is used to solve the definite integral problem where the functions are non-integrable.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

