Define the formula of ${{a}^{3}}-{{b}^{3}}$.
Last updated date: 30th Mar 2023
•
Total views: 306.9k
•
Views today: 2.83k
Answer
306.9k+ views
Hint: Here we will derive the formula of $\left( {{a}^{3}}-{{b}^{3}} \right)$ by taking into account the formula of ${{\left( a-b \right)}^{3}}$which is, ${{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)$. Then we will add $3ab\left( a-b \right)$both the sides and simplify this expression to get $\left( {{a}^{3}}-{{b}^{3}} \right)$.
Complete step-by-step answer:
Here we have to define the formula of ${{a}^{3}}-{{b}^{3}}$.
To get the formula of ${{a}^{3}}-{{b}^{3}}$, first of all, we have to derive the formula of ${{\left( a-b \right)}^{3}}$.
We know that ${{\left( a-b \right)}^{3}}=\left( a-b \right)\left( a-b \right)\left( a-b \right)$
By simplifying the RHS of above equation, we get,
$\begin{align}
& {{\left( a-b \right)}^{3}}=\left( a-b \right)\left( {{a}^{2}}-ab-ba+{{b}^{2}} \right) \\
& or\ {{\left( a-b \right)}^{3}}=\left( a-b \right)\left( {{a}^{2}}-2ab+{{b}^{2}} \right) \\
\end{align}$
By further simplifying the RHS of above equation, we get,
${{\left( a-b \right)}^{3}}={{a}^{3}}-2{{a}^{2}}b+{{b}^{2}}a-b{{a}^{2}}+2a{{b}^{2}}-{{b}^{3}}$
Therefore we get, ${{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b-3{{b}^{2}}a$.
We can also write the above equation as,
${{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)$
Now by adding $3ab\left( a-b \right)$ on both sides of above equation, we get,
${{\left( a-b \right)}^{3}}+3ab\left( a-b \right)=\left( {{a}^{3}}-{{b}^{3}} \right)-3ab\left( a-b \right)+3ab\left( a-b \right)$
By cancelling the like terms from RHS, we get,
$\begin{align}
& {{\left( a-b \right)}^{3}}+3ab\left( a-b \right)=\left( {{a}^{3}}-{{b}^{3}} \right) \\
& or\ {{a}^{3}}-{{b}^{3}}={{\left( a-b \right)}^{3}}+3ab\left( a-b \right) \\
\end{align}$
By taking out (a - b) common from RHS, we get,
$\Rightarrow {{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left[ {{\left( a-b \right)}^{2}}+3ab \right]$
As we know that ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$, by applying it in above equation, we get,
$\Rightarrow {{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}-2ab+3ab \right)$
Therefore we get, ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$
Hence we have found the formula for ${{a}^{3}}-{{b}^{3}}$which is equal to $\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$.
Note: Here, apart from finding ${{\left( a-b \right)}^{3}}$by multiplying $\left( a-b \right)$ three times, students can directly use the formula of ${{\left( a-b \right)}^{3}}$, that is ${{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)$.
Also students can cross check the formula by taking any value of a and b and satisfying them in formula as follows:
Let us take a = 4 and b = 2.
We have found that, ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$
By putting the values of a and b in above equation, we get,
$\Rightarrow {{\left( 4 \right)}^{3}}-{{\left( 2 \right)}^{3}}=\left( 4-2 \right)\left( {{\left( 4 \right)}^{2}}+{{\left( 2 \right)}^{2}}+4\times 2 \right)$
By simplifying the above equation, we get,
$\begin{align}
& \Rightarrow 64-8=\left( 2 \right)\left( 16+4+8 \right) \\
& \Rightarrow 56=2\left( 28 \right) \\
& \Rightarrow 56=56 \\
\end{align}$
Since, LHS=RHS, therefore, our formula is correct.
Complete step-by-step answer:
Here we have to define the formula of ${{a}^{3}}-{{b}^{3}}$.
To get the formula of ${{a}^{3}}-{{b}^{3}}$, first of all, we have to derive the formula of ${{\left( a-b \right)}^{3}}$.
We know that ${{\left( a-b \right)}^{3}}=\left( a-b \right)\left( a-b \right)\left( a-b \right)$
By simplifying the RHS of above equation, we get,
$\begin{align}
& {{\left( a-b \right)}^{3}}=\left( a-b \right)\left( {{a}^{2}}-ab-ba+{{b}^{2}} \right) \\
& or\ {{\left( a-b \right)}^{3}}=\left( a-b \right)\left( {{a}^{2}}-2ab+{{b}^{2}} \right) \\
\end{align}$
By further simplifying the RHS of above equation, we get,
${{\left( a-b \right)}^{3}}={{a}^{3}}-2{{a}^{2}}b+{{b}^{2}}a-b{{a}^{2}}+2a{{b}^{2}}-{{b}^{3}}$
Therefore we get, ${{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b-3{{b}^{2}}a$.
We can also write the above equation as,
${{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)$
Now by adding $3ab\left( a-b \right)$ on both sides of above equation, we get,
${{\left( a-b \right)}^{3}}+3ab\left( a-b \right)=\left( {{a}^{3}}-{{b}^{3}} \right)-3ab\left( a-b \right)+3ab\left( a-b \right)$
By cancelling the like terms from RHS, we get,
$\begin{align}
& {{\left( a-b \right)}^{3}}+3ab\left( a-b \right)=\left( {{a}^{3}}-{{b}^{3}} \right) \\
& or\ {{a}^{3}}-{{b}^{3}}={{\left( a-b \right)}^{3}}+3ab\left( a-b \right) \\
\end{align}$
By taking out (a - b) common from RHS, we get,
$\Rightarrow {{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left[ {{\left( a-b \right)}^{2}}+3ab \right]$
As we know that ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$, by applying it in above equation, we get,
$\Rightarrow {{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}-2ab+3ab \right)$
Therefore we get, ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$
Hence we have found the formula for ${{a}^{3}}-{{b}^{3}}$which is equal to $\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$.
Note: Here, apart from finding ${{\left( a-b \right)}^{3}}$by multiplying $\left( a-b \right)$ three times, students can directly use the formula of ${{\left( a-b \right)}^{3}}$, that is ${{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)$.
Also students can cross check the formula by taking any value of a and b and satisfying them in formula as follows:
Let us take a = 4 and b = 2.
We have found that, ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$
By putting the values of a and b in above equation, we get,
$\Rightarrow {{\left( 4 \right)}^{3}}-{{\left( 2 \right)}^{3}}=\left( 4-2 \right)\left( {{\left( 4 \right)}^{2}}+{{\left( 2 \right)}^{2}}+4\times 2 \right)$
By simplifying the above equation, we get,
$\begin{align}
& \Rightarrow 64-8=\left( 2 \right)\left( 16+4+8 \right) \\
& \Rightarrow 56=2\left( 28 \right) \\
& \Rightarrow 56=56 \\
\end{align}$
Since, LHS=RHS, therefore, our formula is correct.
Recently Updated Pages
If abc are pthqth and rth terms of a GP then left fraccb class 11 maths JEE_Main

If the pthqth and rth term of a GP are abc respectively class 11 maths JEE_Main

If abcdare any four consecutive coefficients of any class 11 maths JEE_Main

If A1A2 are the two AMs between two numbers a and b class 11 maths JEE_Main

If pthqthrth and sth terms of an AP be in GP then p class 11 maths JEE_Main

One root of the equation cos x x + frac12 0 lies in class 11 maths JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
