
Define $\sinh y$and $\cosh y$in terms of exponential functions and show that
$2y = \ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\}$
By putting $\tanh y = \dfrac{1}{3},$deduce that
${\tanh ^{ - 1}}\left( {\dfrac{1}{3}} \right) = \dfrac{1}{2}\ln 2$
Answer
579.9k+ views
Hint: Now, in this question we are given the hyperbolic functions of sin, cos and tan.
Now the hyperbolic sine function is a function $f: R \to R$ is defined by $\sinh y = \dfrac{{\left[ {{e^y} - {e^{ - y}}} \right]}}{2}$. Similarly, the hyperbolic cosine function is a function $f:R \to R$ is defined by $\cosh y = \dfrac{{\left[ {{e^y} + {e^{ - y}}} \right]}}{2}$.
Complete step by step solution: The hyperbolic sine function is a function $f:R \to R$is defined by $\sinh y = \dfrac{{\left[ {{e^y} - {e^{ - y}}} \right]}}{2}$. The hyperbolic cosine function is a function $f:R \to R$is defined by $\cosh y = \dfrac{{\left[ {{e^y} + {e^{ - y}}} \right]}}{2}$.
Now, we need to show that $2y = \ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\}$
Now, starting with the RHS, simplifying it:
$ RHS: \\
\ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\} \\
= \ln \left( {\dfrac{{\dfrac{{{e^y} + {e^{ - y}}}}{2} + \dfrac{{{e^y} - {e^{ - y}}}}{2}}}{{\dfrac{{{e^y} + {e^{ - y}}}}{2} - \dfrac{{{e^y} - {e^{ - y}}}}{2}}}} \right) \\
= \ln \left( {\dfrac{{\dfrac{{2{e^y}}}{2}}}{{\dfrac{{2{e^{ - y}}}}{2}}}} \right) \\
= \ln \left( {\dfrac{{{e^y}}}{{{e^{ - y}}}}} \right) \\
= \ln \left( {{e^y}.{e^y}} \right) \\
= \ln \left( {{e^{2y}}} \right) \\
= 2y \\
= LHS \\ $
Therefore we have proved that
$2y = \ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\}$
Next we need to deduce that
${\tanh ^{ - 1}}\left( {\dfrac{1}{3}} \right) = \dfrac{1}{2}\ln 2$by putting $\tanh y = \dfrac{1}{3},$
We know that the hyperbolic cosine function is a function $f:R \to R$is defined by
$\tanh y = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}}$
Now, taking $\tanh y = \dfrac{1}{3},$and putting in the formula we will get:
$ \dfrac{1}{3} = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{{e^y} - \dfrac{1}{{{e^y}}}}}{{{e^y} + \dfrac{1}{{{e^y}}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{\dfrac{{{e^{2y}} - 1}}{{{e^y}}}}}{{\dfrac{{{e^2} + 1}}{{{e^2}}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{{e^{2y}} - 1}}{{{e^{2y}} + 1}} \\
\Rightarrow {e^{2y}} + 1 = 3({e^{2y}} - 1) \\
\Rightarrow {e^{2y}} + 1 = 3{e^{2y}} - 3 \\
\Rightarrow 4 = 2{e^{2y}} \\
\Rightarrow {e^{2y}} = 2 \\
\Rightarrow 2y = \ln 2 \\
\Rightarrow y = \dfrac{1}{2}\ln 2 \\ $
Therefore, we have deduced the relation successfully.
Note: We are working with hyperbolic functions, so the general trigonometric rules or formulae will not apply. The hyperbolic trigonometric functions have exponential values. Here we have used $\sinh y$ and $\cosh y$ . The expression for $\tanh y = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}}$ . Similarly we have the expressions for $\coth y = \dfrac{{{e^y} + {e^{ - y}}}}{{{e^y} - {e^{ - y}}}}$ , $\operatorname{sech} y = \dfrac{2}{{{e^y} + {e^{ - y}}}}$ and $\operatorname{csch} y = \dfrac{2}{{{e^y} - {e^{ - y}}}}$ .
Now the hyperbolic sine function is a function $f: R \to R$ is defined by $\sinh y = \dfrac{{\left[ {{e^y} - {e^{ - y}}} \right]}}{2}$. Similarly, the hyperbolic cosine function is a function $f:R \to R$ is defined by $\cosh y = \dfrac{{\left[ {{e^y} + {e^{ - y}}} \right]}}{2}$.
Complete step by step solution: The hyperbolic sine function is a function $f:R \to R$is defined by $\sinh y = \dfrac{{\left[ {{e^y} - {e^{ - y}}} \right]}}{2}$. The hyperbolic cosine function is a function $f:R \to R$is defined by $\cosh y = \dfrac{{\left[ {{e^y} + {e^{ - y}}} \right]}}{2}$.
Now, we need to show that $2y = \ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\}$
Now, starting with the RHS, simplifying it:
$ RHS: \\
\ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\} \\
= \ln \left( {\dfrac{{\dfrac{{{e^y} + {e^{ - y}}}}{2} + \dfrac{{{e^y} - {e^{ - y}}}}{2}}}{{\dfrac{{{e^y} + {e^{ - y}}}}{2} - \dfrac{{{e^y} - {e^{ - y}}}}{2}}}} \right) \\
= \ln \left( {\dfrac{{\dfrac{{2{e^y}}}{2}}}{{\dfrac{{2{e^{ - y}}}}{2}}}} \right) \\
= \ln \left( {\dfrac{{{e^y}}}{{{e^{ - y}}}}} \right) \\
= \ln \left( {{e^y}.{e^y}} \right) \\
= \ln \left( {{e^{2y}}} \right) \\
= 2y \\
= LHS \\ $
Therefore we have proved that
$2y = \ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\}$
Next we need to deduce that
${\tanh ^{ - 1}}\left( {\dfrac{1}{3}} \right) = \dfrac{1}{2}\ln 2$by putting $\tanh y = \dfrac{1}{3},$
We know that the hyperbolic cosine function is a function $f:R \to R$is defined by
$\tanh y = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}}$
Now, taking $\tanh y = \dfrac{1}{3},$and putting in the formula we will get:
$ \dfrac{1}{3} = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{{e^y} - \dfrac{1}{{{e^y}}}}}{{{e^y} + \dfrac{1}{{{e^y}}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{\dfrac{{{e^{2y}} - 1}}{{{e^y}}}}}{{\dfrac{{{e^2} + 1}}{{{e^2}}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{{e^{2y}} - 1}}{{{e^{2y}} + 1}} \\
\Rightarrow {e^{2y}} + 1 = 3({e^{2y}} - 1) \\
\Rightarrow {e^{2y}} + 1 = 3{e^{2y}} - 3 \\
\Rightarrow 4 = 2{e^{2y}} \\
\Rightarrow {e^{2y}} = 2 \\
\Rightarrow 2y = \ln 2 \\
\Rightarrow y = \dfrac{1}{2}\ln 2 \\ $
Therefore, we have deduced the relation successfully.
Note: We are working with hyperbolic functions, so the general trigonometric rules or formulae will not apply. The hyperbolic trigonometric functions have exponential values. Here we have used $\sinh y$ and $\cosh y$ . The expression for $\tanh y = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}}$ . Similarly we have the expressions for $\coth y = \dfrac{{{e^y} + {e^{ - y}}}}{{{e^y} - {e^{ - y}}}}$ , $\operatorname{sech} y = \dfrac{2}{{{e^y} + {e^{ - y}}}}$ and $\operatorname{csch} y = \dfrac{2}{{{e^y} - {e^{ - y}}}}$ .
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

