
Define $\sinh y$and $\cosh y$in terms of exponential functions and show that
$2y = \ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\}$
By putting $\tanh y = \dfrac{1}{3},$deduce that
${\tanh ^{ - 1}}\left( {\dfrac{1}{3}} \right) = \dfrac{1}{2}\ln 2$
Answer
594k+ views
Hint: Now, in this question we are given the hyperbolic functions of sin, cos and tan.
Now the hyperbolic sine function is a function $f: R \to R$ is defined by $\sinh y = \dfrac{{\left[ {{e^y} - {e^{ - y}}} \right]}}{2}$. Similarly, the hyperbolic cosine function is a function $f:R \to R$ is defined by $\cosh y = \dfrac{{\left[ {{e^y} + {e^{ - y}}} \right]}}{2}$.
Complete step by step solution: The hyperbolic sine function is a function $f:R \to R$is defined by $\sinh y = \dfrac{{\left[ {{e^y} - {e^{ - y}}} \right]}}{2}$. The hyperbolic cosine function is a function $f:R \to R$is defined by $\cosh y = \dfrac{{\left[ {{e^y} + {e^{ - y}}} \right]}}{2}$.
Now, we need to show that $2y = \ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\}$
Now, starting with the RHS, simplifying it:
$ RHS: \\
\ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\} \\
= \ln \left( {\dfrac{{\dfrac{{{e^y} + {e^{ - y}}}}{2} + \dfrac{{{e^y} - {e^{ - y}}}}{2}}}{{\dfrac{{{e^y} + {e^{ - y}}}}{2} - \dfrac{{{e^y} - {e^{ - y}}}}{2}}}} \right) \\
= \ln \left( {\dfrac{{\dfrac{{2{e^y}}}{2}}}{{\dfrac{{2{e^{ - y}}}}{2}}}} \right) \\
= \ln \left( {\dfrac{{{e^y}}}{{{e^{ - y}}}}} \right) \\
= \ln \left( {{e^y}.{e^y}} \right) \\
= \ln \left( {{e^{2y}}} \right) \\
= 2y \\
= LHS \\ $
Therefore we have proved that
$2y = \ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\}$
Next we need to deduce that
${\tanh ^{ - 1}}\left( {\dfrac{1}{3}} \right) = \dfrac{1}{2}\ln 2$by putting $\tanh y = \dfrac{1}{3},$
We know that the hyperbolic cosine function is a function $f:R \to R$is defined by
$\tanh y = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}}$
Now, taking $\tanh y = \dfrac{1}{3},$and putting in the formula we will get:
$ \dfrac{1}{3} = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{{e^y} - \dfrac{1}{{{e^y}}}}}{{{e^y} + \dfrac{1}{{{e^y}}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{\dfrac{{{e^{2y}} - 1}}{{{e^y}}}}}{{\dfrac{{{e^2} + 1}}{{{e^2}}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{{e^{2y}} - 1}}{{{e^{2y}} + 1}} \\
\Rightarrow {e^{2y}} + 1 = 3({e^{2y}} - 1) \\
\Rightarrow {e^{2y}} + 1 = 3{e^{2y}} - 3 \\
\Rightarrow 4 = 2{e^{2y}} \\
\Rightarrow {e^{2y}} = 2 \\
\Rightarrow 2y = \ln 2 \\
\Rightarrow y = \dfrac{1}{2}\ln 2 \\ $
Therefore, we have deduced the relation successfully.
Note: We are working with hyperbolic functions, so the general trigonometric rules or formulae will not apply. The hyperbolic trigonometric functions have exponential values. Here we have used $\sinh y$ and $\cosh y$ . The expression for $\tanh y = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}}$ . Similarly we have the expressions for $\coth y = \dfrac{{{e^y} + {e^{ - y}}}}{{{e^y} - {e^{ - y}}}}$ , $\operatorname{sech} y = \dfrac{2}{{{e^y} + {e^{ - y}}}}$ and $\operatorname{csch} y = \dfrac{2}{{{e^y} - {e^{ - y}}}}$ .
Now the hyperbolic sine function is a function $f: R \to R$ is defined by $\sinh y = \dfrac{{\left[ {{e^y} - {e^{ - y}}} \right]}}{2}$. Similarly, the hyperbolic cosine function is a function $f:R \to R$ is defined by $\cosh y = \dfrac{{\left[ {{e^y} + {e^{ - y}}} \right]}}{2}$.
Complete step by step solution: The hyperbolic sine function is a function $f:R \to R$is defined by $\sinh y = \dfrac{{\left[ {{e^y} - {e^{ - y}}} \right]}}{2}$. The hyperbolic cosine function is a function $f:R \to R$is defined by $\cosh y = \dfrac{{\left[ {{e^y} + {e^{ - y}}} \right]}}{2}$.
Now, we need to show that $2y = \ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\}$
Now, starting with the RHS, simplifying it:
$ RHS: \\
\ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\} \\
= \ln \left( {\dfrac{{\dfrac{{{e^y} + {e^{ - y}}}}{2} + \dfrac{{{e^y} - {e^{ - y}}}}{2}}}{{\dfrac{{{e^y} + {e^{ - y}}}}{2} - \dfrac{{{e^y} - {e^{ - y}}}}{2}}}} \right) \\
= \ln \left( {\dfrac{{\dfrac{{2{e^y}}}{2}}}{{\dfrac{{2{e^{ - y}}}}{2}}}} \right) \\
= \ln \left( {\dfrac{{{e^y}}}{{{e^{ - y}}}}} \right) \\
= \ln \left( {{e^y}.{e^y}} \right) \\
= \ln \left( {{e^{2y}}} \right) \\
= 2y \\
= LHS \\ $
Therefore we have proved that
$2y = \ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\}$
Next we need to deduce that
${\tanh ^{ - 1}}\left( {\dfrac{1}{3}} \right) = \dfrac{1}{2}\ln 2$by putting $\tanh y = \dfrac{1}{3},$
We know that the hyperbolic cosine function is a function $f:R \to R$is defined by
$\tanh y = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}}$
Now, taking $\tanh y = \dfrac{1}{3},$and putting in the formula we will get:
$ \dfrac{1}{3} = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{{e^y} - \dfrac{1}{{{e^y}}}}}{{{e^y} + \dfrac{1}{{{e^y}}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{\dfrac{{{e^{2y}} - 1}}{{{e^y}}}}}{{\dfrac{{{e^2} + 1}}{{{e^2}}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{{e^{2y}} - 1}}{{{e^{2y}} + 1}} \\
\Rightarrow {e^{2y}} + 1 = 3({e^{2y}} - 1) \\
\Rightarrow {e^{2y}} + 1 = 3{e^{2y}} - 3 \\
\Rightarrow 4 = 2{e^{2y}} \\
\Rightarrow {e^{2y}} = 2 \\
\Rightarrow 2y = \ln 2 \\
\Rightarrow y = \dfrac{1}{2}\ln 2 \\ $
Therefore, we have deduced the relation successfully.
Note: We are working with hyperbolic functions, so the general trigonometric rules or formulae will not apply. The hyperbolic trigonometric functions have exponential values. Here we have used $\sinh y$ and $\cosh y$ . The expression for $\tanh y = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}}$ . Similarly we have the expressions for $\coth y = \dfrac{{{e^y} + {e^{ - y}}}}{{{e^y} - {e^{ - y}}}}$ , $\operatorname{sech} y = \dfrac{2}{{{e^y} + {e^{ - y}}}}$ and $\operatorname{csch} y = \dfrac{2}{{{e^y} - {e^{ - y}}}}$ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

