
Define $\sinh y$and $\cosh y$in terms of exponential functions and show that
$2y = \ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\}$
By putting $\tanh y = \dfrac{1}{3},$deduce that
${\tanh ^{ - 1}}\left( {\dfrac{1}{3}} \right) = \dfrac{1}{2}\ln 2$
Answer
580.2k+ views
Hint: Now, in this question we are given the hyperbolic functions of sin, cos and tan.
Now the hyperbolic sine function is a function $f: R \to R$ is defined by $\sinh y = \dfrac{{\left[ {{e^y} - {e^{ - y}}} \right]}}{2}$. Similarly, the hyperbolic cosine function is a function $f:R \to R$ is defined by $\cosh y = \dfrac{{\left[ {{e^y} + {e^{ - y}}} \right]}}{2}$.
Complete step by step solution: The hyperbolic sine function is a function $f:R \to R$is defined by $\sinh y = \dfrac{{\left[ {{e^y} - {e^{ - y}}} \right]}}{2}$. The hyperbolic cosine function is a function $f:R \to R$is defined by $\cosh y = \dfrac{{\left[ {{e^y} + {e^{ - y}}} \right]}}{2}$.
Now, we need to show that $2y = \ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\}$
Now, starting with the RHS, simplifying it:
$ RHS: \\
\ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\} \\
= \ln \left( {\dfrac{{\dfrac{{{e^y} + {e^{ - y}}}}{2} + \dfrac{{{e^y} - {e^{ - y}}}}{2}}}{{\dfrac{{{e^y} + {e^{ - y}}}}{2} - \dfrac{{{e^y} - {e^{ - y}}}}{2}}}} \right) \\
= \ln \left( {\dfrac{{\dfrac{{2{e^y}}}{2}}}{{\dfrac{{2{e^{ - y}}}}{2}}}} \right) \\
= \ln \left( {\dfrac{{{e^y}}}{{{e^{ - y}}}}} \right) \\
= \ln \left( {{e^y}.{e^y}} \right) \\
= \ln \left( {{e^{2y}}} \right) \\
= 2y \\
= LHS \\ $
Therefore we have proved that
$2y = \ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\}$
Next we need to deduce that
${\tanh ^{ - 1}}\left( {\dfrac{1}{3}} \right) = \dfrac{1}{2}\ln 2$by putting $\tanh y = \dfrac{1}{3},$
We know that the hyperbolic cosine function is a function $f:R \to R$is defined by
$\tanh y = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}}$
Now, taking $\tanh y = \dfrac{1}{3},$and putting in the formula we will get:
$ \dfrac{1}{3} = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{{e^y} - \dfrac{1}{{{e^y}}}}}{{{e^y} + \dfrac{1}{{{e^y}}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{\dfrac{{{e^{2y}} - 1}}{{{e^y}}}}}{{\dfrac{{{e^2} + 1}}{{{e^2}}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{{e^{2y}} - 1}}{{{e^{2y}} + 1}} \\
\Rightarrow {e^{2y}} + 1 = 3({e^{2y}} - 1) \\
\Rightarrow {e^{2y}} + 1 = 3{e^{2y}} - 3 \\
\Rightarrow 4 = 2{e^{2y}} \\
\Rightarrow {e^{2y}} = 2 \\
\Rightarrow 2y = \ln 2 \\
\Rightarrow y = \dfrac{1}{2}\ln 2 \\ $
Therefore, we have deduced the relation successfully.
Note: We are working with hyperbolic functions, so the general trigonometric rules or formulae will not apply. The hyperbolic trigonometric functions have exponential values. Here we have used $\sinh y$ and $\cosh y$ . The expression for $\tanh y = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}}$ . Similarly we have the expressions for $\coth y = \dfrac{{{e^y} + {e^{ - y}}}}{{{e^y} - {e^{ - y}}}}$ , $\operatorname{sech} y = \dfrac{2}{{{e^y} + {e^{ - y}}}}$ and $\operatorname{csch} y = \dfrac{2}{{{e^y} - {e^{ - y}}}}$ .
Now the hyperbolic sine function is a function $f: R \to R$ is defined by $\sinh y = \dfrac{{\left[ {{e^y} - {e^{ - y}}} \right]}}{2}$. Similarly, the hyperbolic cosine function is a function $f:R \to R$ is defined by $\cosh y = \dfrac{{\left[ {{e^y} + {e^{ - y}}} \right]}}{2}$.
Complete step by step solution: The hyperbolic sine function is a function $f:R \to R$is defined by $\sinh y = \dfrac{{\left[ {{e^y} - {e^{ - y}}} \right]}}{2}$. The hyperbolic cosine function is a function $f:R \to R$is defined by $\cosh y = \dfrac{{\left[ {{e^y} + {e^{ - y}}} \right]}}{2}$.
Now, we need to show that $2y = \ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\}$
Now, starting with the RHS, simplifying it:
$ RHS: \\
\ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\} \\
= \ln \left( {\dfrac{{\dfrac{{{e^y} + {e^{ - y}}}}{2} + \dfrac{{{e^y} - {e^{ - y}}}}{2}}}{{\dfrac{{{e^y} + {e^{ - y}}}}{2} - \dfrac{{{e^y} - {e^{ - y}}}}{2}}}} \right) \\
= \ln \left( {\dfrac{{\dfrac{{2{e^y}}}{2}}}{{\dfrac{{2{e^{ - y}}}}{2}}}} \right) \\
= \ln \left( {\dfrac{{{e^y}}}{{{e^{ - y}}}}} \right) \\
= \ln \left( {{e^y}.{e^y}} \right) \\
= \ln \left( {{e^{2y}}} \right) \\
= 2y \\
= LHS \\ $
Therefore we have proved that
$2y = \ln \left\{ {\dfrac{{\cosh y + \sinh y}}{{\cosh y - \sinh y}}} \right\}$
Next we need to deduce that
${\tanh ^{ - 1}}\left( {\dfrac{1}{3}} \right) = \dfrac{1}{2}\ln 2$by putting $\tanh y = \dfrac{1}{3},$
We know that the hyperbolic cosine function is a function $f:R \to R$is defined by
$\tanh y = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}}$
Now, taking $\tanh y = \dfrac{1}{3},$and putting in the formula we will get:
$ \dfrac{1}{3} = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{{e^y} - \dfrac{1}{{{e^y}}}}}{{{e^y} + \dfrac{1}{{{e^y}}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{\dfrac{{{e^{2y}} - 1}}{{{e^y}}}}}{{\dfrac{{{e^2} + 1}}{{{e^2}}}}} \\
\Rightarrow \dfrac{1}{3} = \dfrac{{{e^{2y}} - 1}}{{{e^{2y}} + 1}} \\
\Rightarrow {e^{2y}} + 1 = 3({e^{2y}} - 1) \\
\Rightarrow {e^{2y}} + 1 = 3{e^{2y}} - 3 \\
\Rightarrow 4 = 2{e^{2y}} \\
\Rightarrow {e^{2y}} = 2 \\
\Rightarrow 2y = \ln 2 \\
\Rightarrow y = \dfrac{1}{2}\ln 2 \\ $
Therefore, we have deduced the relation successfully.
Note: We are working with hyperbolic functions, so the general trigonometric rules or formulae will not apply. The hyperbolic trigonometric functions have exponential values. Here we have used $\sinh y$ and $\cosh y$ . The expression for $\tanh y = \dfrac{{{e^y} - {e^{ - y}}}}{{{e^y} + {e^{ - y}}}}$ . Similarly we have the expressions for $\coth y = \dfrac{{{e^y} + {e^{ - y}}}}{{{e^y} - {e^{ - y}}}}$ , $\operatorname{sech} y = \dfrac{2}{{{e^y} + {e^{ - y}}}}$ and $\operatorname{csch} y = \dfrac{2}{{{e^y} - {e^{ - y}}}}$ .
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

