
What is ${\cot ^2}\theta $. in terms of non- exponential trigonometric function?
Answer
471k+ views
Hint: In this question, we are given a trigonometric function ${\cot ^2}\theta $. And we have to convert it in non-exponential trigonometric function i.e., we have to make its degree one.
For that, we will first write $\cot \theta $ in the form of $\sin \theta $ and $\cos \theta $ .
Then, we will use the half-angle formulas for removing their exponential powers.
Formulae to be used:
$\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ ,
$\cos 2\theta = 1 - 2{\sin ^2}\theta $ ,
$\cos 2\theta = 2{\cos ^2}\theta - 1$ .
Complete answer:
Given trigonometric function is ${\cot ^2}\theta $ .
To write the given trigonometric function in terms of the non-exponential function.
For that, first, we will write $\cot \theta $ in the form of $\sin \theta $ and $\cos \theta $ , i.e., we can write it as \[{\cot ^2}\theta = \dfrac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }}\] .
Now, we know that, $\cos 2\theta = 1 - 2{\sin ^2}\theta $ , so, adding $2{\sin ^2}\theta $ on both sides, we get, $\cos 2\theta + 2{\sin ^2}\theta = 1 - 2{\sin ^2}\theta + 2{\sin ^2}\theta $ , i.e., $\cos 2\theta + 2{\sin ^2}\theta = 1$ . Now, subtracting $\cos 2\theta $ from both sides, we get, $\cos 2\theta + 2{\sin ^2}\theta - \cos 2\theta = 1 - \cos 2\theta $ , i.e., $2{\sin ^2}\theta = 1 - \cos 2\theta $ . Now, finally, divide both sides by $2$ , we get, \[{\sin ^2}\theta = \dfrac{{1 - \cos 2\theta }}{2}\] .
Similarly, we can also have $\cos 2\theta = 2{\cos ^2}\theta - 1$ , adding $1$ on both sides, we get, $\cos 2\theta + 1 = 2{\cos ^2}\theta - 1 + 1$ , i.e., $\cos 2\theta + 1 = 2{\cos ^2}\theta $ . Now, dividing, both sides by $2$ , we get, $\dfrac{{\cos 2\theta + 1}}{2} = \dfrac{{2{{\cos }^2}\theta }}{2}$ , which can also be written as ${\cos ^2}\theta = \dfrac{{1 + \cos 2\theta }}{2}$ .
Put these values in \[{\cot ^2}\theta = \dfrac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }}\] , we get, \[{\cot ^2}\theta = \dfrac{{\dfrac{{1 + \cos 2\theta }}{2}}}{{\dfrac{{1 - \cos 2\theta }}{2}}}\] , i.e., \[{\cot ^2}\theta = \dfrac{{\left( {1 + \cos 2\theta } \right) \times 2}}{{\left( {1 - \cos 2\theta } \right) \times 2}}\] , now $2$ will be canceled out by $2$ , then we get, \[{\cot ^2}\theta = \dfrac{{1 + \cos 2\theta }}{{1 - \cos 2\theta }}\] .
Hence, the non-exponential trigonometric function of ${\cot ^2}\theta $ is \[\dfrac{{1 + \cos 2\theta }}{{1 - \cos 2\theta }}\] .
Note:
Non- exponential function simply means the resultant function should not have a degree of more than one, i.e., the highest power must be equal to one.
One must have knowledge of all the basic identities associated with the trigonometric functions.
These types of questions are a bit tricky and difficult, so one can do silly mistakes if not done with full concentration.
For that, we will first write $\cot \theta $ in the form of $\sin \theta $ and $\cos \theta $ .
Then, we will use the half-angle formulas for removing their exponential powers.
Formulae to be used:
$\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ ,
$\cos 2\theta = 1 - 2{\sin ^2}\theta $ ,
$\cos 2\theta = 2{\cos ^2}\theta - 1$ .
Complete answer:
Given trigonometric function is ${\cot ^2}\theta $ .
To write the given trigonometric function in terms of the non-exponential function.
For that, first, we will write $\cot \theta $ in the form of $\sin \theta $ and $\cos \theta $ , i.e., we can write it as \[{\cot ^2}\theta = \dfrac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }}\] .
Now, we know that, $\cos 2\theta = 1 - 2{\sin ^2}\theta $ , so, adding $2{\sin ^2}\theta $ on both sides, we get, $\cos 2\theta + 2{\sin ^2}\theta = 1 - 2{\sin ^2}\theta + 2{\sin ^2}\theta $ , i.e., $\cos 2\theta + 2{\sin ^2}\theta = 1$ . Now, subtracting $\cos 2\theta $ from both sides, we get, $\cos 2\theta + 2{\sin ^2}\theta - \cos 2\theta = 1 - \cos 2\theta $ , i.e., $2{\sin ^2}\theta = 1 - \cos 2\theta $ . Now, finally, divide both sides by $2$ , we get, \[{\sin ^2}\theta = \dfrac{{1 - \cos 2\theta }}{2}\] .
Similarly, we can also have $\cos 2\theta = 2{\cos ^2}\theta - 1$ , adding $1$ on both sides, we get, $\cos 2\theta + 1 = 2{\cos ^2}\theta - 1 + 1$ , i.e., $\cos 2\theta + 1 = 2{\cos ^2}\theta $ . Now, dividing, both sides by $2$ , we get, $\dfrac{{\cos 2\theta + 1}}{2} = \dfrac{{2{{\cos }^2}\theta }}{2}$ , which can also be written as ${\cos ^2}\theta = \dfrac{{1 + \cos 2\theta }}{2}$ .
Put these values in \[{\cot ^2}\theta = \dfrac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta }}\] , we get, \[{\cot ^2}\theta = \dfrac{{\dfrac{{1 + \cos 2\theta }}{2}}}{{\dfrac{{1 - \cos 2\theta }}{2}}}\] , i.e., \[{\cot ^2}\theta = \dfrac{{\left( {1 + \cos 2\theta } \right) \times 2}}{{\left( {1 - \cos 2\theta } \right) \times 2}}\] , now $2$ will be canceled out by $2$ , then we get, \[{\cot ^2}\theta = \dfrac{{1 + \cos 2\theta }}{{1 - \cos 2\theta }}\] .
Hence, the non-exponential trigonometric function of ${\cot ^2}\theta $ is \[\dfrac{{1 + \cos 2\theta }}{{1 - \cos 2\theta }}\] .
Note:
Non- exponential function simply means the resultant function should not have a degree of more than one, i.e., the highest power must be equal to one.
One must have knowledge of all the basic identities associated with the trigonometric functions.
These types of questions are a bit tricky and difficult, so one can do silly mistakes if not done with full concentration.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

